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Introduction

Figure 1: Formula 1, the highest class of single-seater auto racing
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Three types of ranking problems

• Who will win? (Top-K ranking problem)

• What will be the final ranking? (Learning to ranks)

• What is the probability for each rank? (probability model for ranks)
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• The probability model for ranking is actually the probability model on

permutations (ranking model)

• Since the ranking model is the discrete probability model assigning

probability on each permutation, it requires numerous parameters

when the number of ranked items is large.

• For example, suppose that we are considering the ranking model with

10 players. Then, there are about 3,620,000 parameters in the model.

Thus, it is necessary to develop the parametric model effectively ac-

counting for the patterns of observed rankings.
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Conventional Ranking Models

• The early development of ranking model is motivated by the following

question: ‘How can we estimate the entire ranks of item only with

pairwise comparison experiments?’

• Bradley-Terry (BT) model is one of the most famous ranking model.

When BT model (1952) was first proposed, the model focused on the

estimation of (the most probable) ranking itself, not the probability

model for ranking.

• Bradley-Terry model has p parameters for p items and likelihood

method is widely used for estimation of the model.
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• Babington Smith (1950) proposed the ranking model with p(p−1)/2

parameters based on the pairwise comparison experiments for p items.

• However, the estimation of Babington-Smith (BS) model is computa-

tionally difficult at that time for large p, because it contains complex

normalized term depending on the model parameters.

• Mallows (1957) proposed a ranking model simplifying Babington Smith

model. Interestingly Mallows explains the result of pairwise compar-

isons as a distance from the unimodal ranking. Mallows model has

just two parameters associated with location and dispersion.
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Figure 2: Mallows model and the permutation polytope
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• From generalization of Mallows model, the likelihood of BT model in-

duces the Bradley-Terry-Mallows (BTM) model, the probability model

for ranking. The BTM model has p parameters.

• Family of BS model: Mallows model ⊂ BTM ⊂ BS model.

• Can we construct various models between each developed model?

By adopting the idea of LARS, Regularize the BS model!
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Goal

• The aim of this paper is to construct a continuum of probability mod-

els between the BS and BTM model by regularization.

• In addition, we propose a computational algorithm to obtain the the

penalized likelihood estimator.

• We use l1 regularization and obtain the penalized likelihood estimator

based on the alternating direction methods of multipliers (ADMM)

method.
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Contributions

• Development of new models as variants of BS model.

• Development of computation algorithm for BS and BTM model.

• Investigation of theoretical property of the proposed algorithm.
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Continuum of Barbington-Smith Model
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Babington Smith Model

• π is a random permutation of [p] = {1, · · · , p} and πj denotes the

rank of item j .

• Let Ijk(π) be the indicator function that indicates the j precedes k in

the ranking π.

• Let I (π) = (Ijk(π), 1 ≤ j < k ≤ p)> ∈ Rp̃ with p̃ = p(p − 1)/2,

which represents the random permutation, the rank π.
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• Let αjk = Pr(Ijk(π) = 1) be the probability that j precedes k in

ranking π.

• The probability of the ranking π in the BS model is defined as follows:

Pr(π;α) = K
∏
j<k

[αjk ]Ijk (π)[1− αjk ]1−Ijk (π)

where the normalizing term K is

K =
∑
π∈Sp

∏
j<k

α
Ijk (π)
jk (1− αjk)1−Ijk (π).
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• For example let p = 3 and π = (1, 3, 2), i.e. (1→ 3→ 2), then

Pr(π) = Kα13α12(1− α23)

where

K = α12α13α23 + · · ·+ (1− α12)(1− α13)(1− α23)
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Family of BS model

• BTM model: Let

αjk =
uj

uj + uk
,

where u = (u1, · · · , up) ∈ Rp, uj > 0 for all j ∈ [p].

• Mallows model: Re-define Ijk(π) be the indicator of concordance pair

(j , k) to σ (location parameter) and let

αjk = φ (scale parameter)

for all j < k .
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Continuum of BS Model

• We try to make a continuous ranking model that can represent all

models between the BS and BT models according to the degree of

regularization.

• We model the probability with parameters α = (αj , j = 1, · · · , p)> ∈
Rp and γ = (γjk , 1 ≤ j < k ≤ p)> ∈ Rp̃.

• In addition, denote a vector excluding first p elements in x by x−(1:p).

Conversely, a vector including first p elements in x by x(1:p).
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• We model the αjk as follows.

αjk =
exp(αj − αk + γjk)

exp(αj − αk + γjk) + 1
, j < k

subject to
∑p

j=1 αj = 0,
∑k−1

j=1 γjk = 0 for each k = 2, · · · , p for

identifiability.

• We can obtain the continuous ranking model by applying a regular-

ization method to γ since if γjk = 0 for all j < k then our model is

same as the BTM model and if γjk 6= 0 for any j < k then our model

is same as the BS model.
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Likelihood

• Since Pr(π;α,γ) = Pr(I (π);α,γ),

log Pr(π;α,γ) = logK (α,γ) +∑
j<k

Ijk(π) log

(
αjk

1− αjk

)
+ log(1− αjk)

= logK (α,γ) +∑
j<k

Ijk(π)θjk − log(1 + exp(θjk))

=
∑
j<k

Ijk(π)θjk + log

(
K (α,γ)∏

j<k(1 + exp(θjk)
)

)

where Θ = (θjk , 1 ≤ j < k ≤ p)> ∈ Rp̃, θjk = αj − αk + γjk , j < k .
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• Let πi be the i-th observation of π. To write the loglikelihood as

canonical form of exponential family, we introduce a vector xi =

(Ijk(πi ), 1 ≤ j < k ≤ q)> ∈ X := {0, 1}p̃ for πi

• Then, the log likelihood function of our model is written by

L(Θ|X ) =
n∑

i=1

log Pr(πi ; Θ)

=
n∑

i=1

∑
j<k

Ijk(πi )θjk − logZ (Θ)


=

n∑
i=1

Θ>xi − n logZ (Θ),

where Z (Θ) =
∏

j<k 1+exp(θjk )

K(α,γ) .
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Parameter Constraints

• We wish to shrink γjk not θjk by regularization. In addition we have

constraints for {αj} and {γjk} for identifiability.

• For example, when p = 3, the design matrix A and β can be repre-

sented as follows.

A =



1 −1 0 1 0 0

1 0 −1 0 1 0

0 1 −1 0 0 1

1 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1


β = (α1, · · · , α3, γ12, · · · , γ23)> ∈ R6.
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• Let

D =

(
Ip̃×p̃
0p×p̃

)
∈ R(p+p̃)×p̃.

Then,

Aβ = (θ12, θ13, θ23, 0, 0, 0)> = DΘ,

• Since A is invertible,

β = A−1DΘ

We use l1-penalization with λ
∑

jk |γjk |, which is written by

λ‖(A−1DΘ)−(1:3)‖1 in terms of θ.
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Continuum of BS Model

We can set A for general p ≥ 3. Then, the continuum BS model is

estimated by the following minimization problem.

min −L(Θ|X ) + λ‖(A−1DθΘ)−(1:p)‖1
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Computational Issue

• The object function contains non-differentiable penalty.

• The computation of Z (Θ) and ∂Z (Θ)/∂Θ is intractable due to the

summations over all permutations when p is large.
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Computation
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• The object function contains non-differentiable penalty → ADMM

• The computation of Z (Θ) and ∂Z (Θ) is intractable due to the sum-

mations over all permutations when p is large. → Contrastive Diver-

gence algorithm
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• Our objective function can be solved through ADMM.

min −L(Θ|X ) + λ‖z−(1:p)‖1
subject to z = A−1DΘ

• The process is divided into three steps:

Θ(k+1) = argmin
θ

− L(Θ|X ) +
ρ

2
‖z(k) − A−1DΘ + u(k)‖22

z(k+1) = argmin
z

λ‖z−(1:p)‖1 +
ρ

2
‖z− A−1DΘ(k+1) + u(k)‖22

u(k+1) = u(k) + z(k+1) − A−1DΘ(k+1)
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Update of Θ (Contrastive Divergence Algorithm)

• Consider a (proposal) distribution

Pr(x; Θ0) = exp(ΘT
0 x)/Z (Θ0).

and let x̃i ∼iid Pr(x; Θ0).

• Then,

∂L(Θ|X )

∂Θ
'

n∑
i=1

xi −
∑m

l=1 x̃lhl(Θ, x̃l ; Θ0)∑m
l=1 hl(Θ, x̃l ; Θ0)

:= g(Θ; Θ0,m)

where hl = exp((Θ−Θ0)T x̃l).

• Then, we update the gradient decent method with ∂L(Θ|X )

∂Θ .
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Proposal distribution

• Mallows φ model is a special case of BS model such that the model

can be written by the same type of the BS model.

• The probability function of Mallows φ model is

Pr(π;σ, φ) =
1

Z (φ)
φd(π,σ), φ ∈ (0, 1]

where d(π, σ) =
∑

j<k I (σ(k) → σ(j) ∈ r) and Z (φ) = (1 + φ)(1 +

φ+ φ2) · · · (1 + · · ·+ φp−1).
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Assumption

L is λ-strongly convex. Also, there exists G > 0 such that∥∥∥∥ ∂

∂Θ
L(Θ|X )

∥∥∥∥
2

≤ G , ∀Θ ∈ C

Theorem (Large deviation bound for approximation) Let 0 < γ <
√

2λ.

Then there exists a constant d > 0 only depending on ε > 0 such that

Pr
θ0

(∥∥∥∥ ∂

∂Θ
L̂m(Θ|X )− ∂

∂Θ
L(Θ|X )

∥∥∥∥
∞
> γε

)
< exp

(
−γ2ε2dm

)
.

for a fixed Θ ∈ C.

Theorem implies the gradient ∂

∂Θ L̂m(Θ|X ) is approximated to the

gradient (asymptotically unbiased estimator of the gradient). Thus, we

can apply the theoretical properties of stochastic gradient algorithm.
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Theorem

Let 0 < γ <
√

2λ. Consider diminishing learning rate ηk = 2
(2λ−γ2)k and

fix ε, ξ ∈ (0, 1) arbitrarily. Then for sufficiently large m

Pr
θ0

(
‖Θ(k) −Θ∗‖22 ≤

L

k
+

ε2

2λ− γ2

)
≥ 1− ξ

where

L = max

(
‖Θ(1) −Θ∗‖22,

4(γ2ε2 + G 2)

(2λ− γ2)2

)

Theorem implies the convergence of solution at the first step in ADMM.
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Elections of the American Psychological Association (p = 5,

n = 5328, 1777, 1776(traning, validation, test))

BS BTM CBS(aic) CBS(bic) CBS(best)

KL 0.138 0.163 0.139 0.137 0.135

TV 0.204 0.235 0.205 0.205 0.201

Table 1: APA 2008

BS BTM CBS(aic) CBS(bic) CBS(best)

KL 0.232 0.227 0.256 0.233 0.201

TV 0.274 0.272 0.289 0.276 0.254

Table 2: APA 2009
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Concluding Remarks
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Concluding remarks

• We develop new models as variants of BS model called of continuum

Babington Smith model/

• We propose computation algorithm for BS and BTM model.

• We prove theoretical property of the proposed computational algo-

rithm partly.

• We are proving the convergence of our ADMM algorithm and are

studying estimation method with missing ranks.
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Thank you!
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