예시
다음은 argparse 와 wandb 를 이용해서 모형을 적합하고 모니터링 하는 예 입니다.
라이브러리 파일 (libimg.py)
# 코드
import torch
import torch.nn as nn
import argparsel
import torch.optim as optim
import torch.nn.functional as F
import wandb
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def modelFit(model, trainloader, opt, device):
epochs = opt.epochs
learning_rate = opt.lr
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
for epoch in range(epochs): # loop over the dataset multiple times
running_loss = 0.0
for i, (inputs, labels) in enumerate(trainloader):
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 20 == 19: # print every 20 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 20:.3f}')
wandb.log({"Training loss": running_loss / 20})
running_loss = 0.0
return running_loss
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate')
parser.add_argument('--batch_size', type=int, default=128,
help='learning rate')
parser.add_argument('--epochs', type=int, default=10,
help='epochs')
parser.add_argument('--name', type=str, default="default",
help='run_name')
opt = parser.parse_args()
return opt
main 실행 파일
# 실행파일의 작성
import torch
import torchvision
import torchvision.transforms as transforms
import wandb
import libimg
opt = libimg.parse_option()
print("Run Name:", opt.name)
print("Batch Size:", opt.batch_size)
print("Learning Rate:", opt.lr)
print("Epoch:", opt.epochs)
wandb.init(project='CIFAR10 Classification')
args = {
"learning_rate": opt.lr,
"epochs": opt.epochs,
"batch_size": opt.batch_size
}
wandb.config.update(args)
wandb.run.name = opt.name
# 현재 실행의 상태를 저장합니다.
wandb.run.save()
#%%
batch_size = opt.batch_size
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device:', device)
net = libimg.Net().to(device)
opt = libimg.parse_option()
v = libimg.modelFit(net, trainloader, opt, device)
# 모델 weight 저장
print('Finished Training')
wandb.finish()
커맨드 실행
python wandb_run2.py --name sky_blue2 --epochs 50