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Things to know

• basic operation of matrix

• spanning space, null space

• projection and geometry

• linear map and matrix
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Visualization of Vectors
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Step 1
계산에서 행렬과 벡터를 사용하는 중요한 이유 중 하나가 간결한 표현이다. 복잡한 식의 형태를 행렬과 벡터를 도입함으로써 간단한 표현

형을 얻을 수 있고, 그것을 이용하여 식의 변형과 계산에 대한 insight를 얻을 수 있다. 여기서는 행렬과 벡터의 기본 연산과 최적화에서

자주 사용되는 간단한 등식에 대해서 배운다.
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Different views of vectors

• Coding

• Math
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Different views of vectors

a1 = [1, 0], a2 = [2, 0]

What is a1 + a2? What is 3a1? Draw your idea!
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Different views of vectors

a1 = [1, 1], a2 = [2, 1]

What is a1 + a2? Draw your idea!

• On x-axis (another example)

• On y-axis (another example)
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Different views of vectors

a1 = [1, 1] = [1, 0] + [0, 1] a2 = [2, 1] = [2, 0] + [0, 1]

Let a11 = [1, 0], a12 = [0, 1], a21 = [2, 0], a22 = [0, 1] then a1 = a11 + a12 and a2 = a21 + a22.

Thus,

a1 + a2 = (a11 + a12) + (a21 + a22) = (a11 + a21) + (a12 + a22)

Draw the last term.
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벡터의 분해를 이용하여 벡터 더하기 계산 과정을 분해하여 이해할 수 있다. 분해한 벡터를

길이가 1 벡터와 스칼라의 곱으로 더 세밀하게 분해해보자.

• a11 = 1 · [1, 0]
• a12 = 1 · [0, 1]
• a21 = 2 · [1, 0]
• a22 = 1 · [0, 1]

Visualize a1 + a2!
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여기서 a1과 a2는 두 벡터 [1, 0]와 [0, 1]의 각 스칼라 곱에 합을 이용하면 항상 표현이 됨을 알

수 있다.

(잠깐!) 만약 다른 두 벡터로 [1, 1]/
√
2와 [−1, 1]/

√
2로 a1과 a2를 표현할 수 있을까? (길이를 1

로 맞춰주기 위해서
√
2로 나눈 것임!)

• (방향)벡터를 분해할 때 기준이 되는 벡터를 잡은 것이다.

• 기준이 되는 벡터는 적당한 조건을 만족하도록 잡아야 한다. (기저벡터 참고)
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Vector and Matrix

in the view of computational perspective
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Notation

• Denote a 2-dimensional data array (n× p matrix) by X.

• Denote the element in the ith row and the jth column of X by xij or (X)ij .

• Denote by Xj the jth column vector of X.

• Denote the ith data(observation or record) by xi (column vector). Thus,

X =
(
X1 X2 · · · Xp

)
=

 x>1
...

x>n

 .
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import numpy as np

A = [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] , [ 1 0 , 1 1 , 1 2 ] ]

p r i n t ( ” l i s t :\ n” , A)

# mat r i x

A = np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] , [ 1 0 , 1 1 , 1 2 ] ] )

p r i n t ( ’ m a t r i x :\ n ’ , A)

A [ 1 , 1 ]

A [ 1 , : ]

A [ : , 0 ]

# example

n = 100

p = 10

A = np . random . normal ( s i z e =(n , p ) )

A [ 0 , ]

A [ : , 3 ]
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Multiplication

Let A be n × p matrix, and C be p × m matrix. The AC is n × m matrix, and (AC)ij =∑p
k=1(A)ik(C)kj .

• AB1C +AB2C = A(B1 +B2)C

• B1AC +AB2C 6= A(B1 +B2)C
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Multiplication of block matrix

Suppose that AijBjks are well defined. Then,(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
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Transpose Transpose is an operation defined on matrix. We denote the transpose of A by A>.

Image of transpose of n× p matrix is p× n matrix with (A>)ij = Aji

• (AB)> = B>A>

• (A1A2 · · ·Ak)
> = A>k · · ·A>2 A>1
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Transpose of block matrix(
A11 A12

A21 A22

)>
=

(
A>11 A>21
A>12 A>22

)
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Example

Let X be (
X11 X12

X21 X22

)
,

then X>X is given by(
X11 X12

X21 X22

)>(
X11 X12

X21 X22

)
=

(
X>11 X>21
X>12 X>22

)(
X11 X12

X21 X22

)

=

(
X>11X11 +X>21X21 X>11X12 +X>21X22

X>12X11 +X>22X21 X>12X12 +X>22X22

)
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Trace Trace is an operation defined on squared matrix.

tr : A ∈ Rp×p 7→
∑
j

(A)jj ∈ R

.

• tr(A+B) = tr(A) + tr(B)

• tr(kA) = ktr(A) (k is a constant)

• Let A ∈ Rn×p and C ∈ Rp×n. Then,

tr(AC) = tr(CA)

• tr(A>A) =
∑

i,j(A)
2
ij

Department of Statistics, University of Seoul Linear algebra for computational statistics I 19 / 29



Let x ∈ Rp and A ∈ Rp×p.

exp(x>Ax) = exp(tr(Axx>))?
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(example) x ∈ Rp, and let Σ ∈ Rp×p.

• exp(−x>Σx) = exp(−tr(x>Σx))

• exp(−tr(x>(Σx)) = exp(−tr(Σxx>)) = exp(−tr(xx>Σ))
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Inverse matrix

Let A,B ∈ Rp×p. If

AB = BA = I

then B is inverse of A and we denote B = A−1.
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If the inverse matrices exist,

• (AB)−1 = B−1A−1

• (A>)−1 = (A−1)>

Department of Statistics, University of Seoul Linear algebra for computational statistics I 23 / 29



Schur’s lemma∗

[
A B

C D

]−1

=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
,

provided that A−1 and (D − CA−1B)−1 are exist.
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Orthogonal matrix

U ∈ Rp×p is orthogonal if U>U = UU> = I.

Denote the jth column and ith row of U by Uj and ui, respectively. Check that

• U> = U−1.

• U>j Uj = 0 for j 6= k.

• u>j uk = 0 for j 6= k.
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Positive definite matrix A ∈ Rp×p. If a>Aa > 0 for all a ∈ Rp (a 6= 0 ∈ Rp), then A is

positive definite.

Nonnegative definite matrix If a>Aa ≥ 0 for all a ∈ Rp (a 6= 0 ∈ Rp), then A is nonnegative

definite.
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(Ian) Can we measure a certain amount of positive definiteness?

(Louise) How about this? maxa a
>Aa and mina a

>Aa.

(Ian) Hm, reasonable. But, we have to worry about the scaling problem.

(Louise) Right. For a fixed A, a>Aa can be arbitrary large as (ka)>A(ka) > a>Aa for all k > 1.

(Ian) It’d be better fix it as maxa:‖a‖=1 a
>Aa and mina:‖a‖=1 a

>Aa
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Note that every covariance matrix is nonnegative definite.

(proof) Let X be a random vector and µ = E(X), then Σ = E(X−µ)>(X−µ) is a covariance

matrix. For all a ∈ Rp

a>Σa = Ea>(X− µ)>(X− µ)a
= E((X− µ)a)>((X− µ)a)
= E‖(X− µ)a‖2 ≥ 0
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Linear equations

Let x = (x1, · · · , xp) be a variable and aijs and bjs are constants.

a11x1 + · · ·+ a1pxp = b1

a21x1 + · · ·+ a2pxp = b2
...

...

an1x1 + · · ·+ anpxp = bn

These n equations are simply written by matrix and vector.

Ax = b

where A ∈ Rn×p, x ∈ Rp and b ∈ Rn.
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