Linear algebra for computational statistics II

Jong-June Jeon
September, 2022
Department of Statistics, University of Seoul

Things to know

- basic operation of matrix
- spanning space, null space
- projection and geometry
- linear map and matrix

Linear space

Linear space and matrix

Step 2

벡터는 숫자의 순서열로서 단순히 어떤 숫자들의 모임이지만, 내적이 정의된 공간에서의 원소로 이해할 수 있다. 벡터 공간의 원소로써 벡터를 다루면 앞서 정의한 벡터의 연산 과정을 시각화하여 더 깊은 이해를 얻을 수 있다. 행렬은 벡터공간에서 정의된 선형변환(함수) 이며 행렬의 연산이 이 선형변환에 정의된 함수의 연산이라는 사실을 알 수 있다. 여기서는 벡터 공간의 정의, 행렬이 곧 선형변환임을 이해한다.

Vector space

- operation rule (addition, scalar multiplication, ...)
- completeness of elements : (identity and inverse)

Vector space: example

- \mathbb{R}^{n} is vector space?
- The set of $\mathbb{R}^{p \times p}$ is vector space?

Before answering the above question, check the operation rules and elements of indentity in your vector space.

Let A be $m \times n$ matrix and x be n matrix (n dimensional comlumn vector).

- Write an example of A and x and compute $A x$. Where does the result lie on?
- Choose an other x^{\prime} and compute $A x^{\prime}$.
- Choose two constant a and b and compute $A(a x)$ and $A\left(b x^{\prime}\right)$ and $A(a x)+A\left(b x^{\prime}\right)$.
- Compute $A\left(a x+b x^{\prime}\right)$.
- Write an example of A and x and compute $A x$. Where does the result lie on? A moves $x \in \mathbb{R}^{n}$ on $A x \in \mathbb{R}^{m}$.
- Choose an other x^{\prime} and compute $A x^{\prime}$. A also moves $x^{\prime} \in \mathbb{R}^{n}$ on $A x^{\prime} \in \mathbb{R}^{m}$.
- Choose two constant a and b and compute $A(a x)$ and $A\left(b x^{\prime}\right)$ and $A(a x)+A\left(b x^{\prime}\right)$.
- Compute $A\left(a x+b x^{\prime}\right)$.

Note that $A(a x)+A\left(b x^{\prime}\right)=A\left(a x+b x^{\prime}\right)$, which implies that A moves elements in \mathbb{R}^{n} to \mathbb{R}^{n} with satisfying an special property.

Definition: Linear map

Let V and W be vector spaces and let \mathcal{L} be map from V to W.

- $\mathcal{L}(x+y)=\mathcal{L}(x)+\mathcal{L}(y)$ for all $x, y \in V$
- $\mathcal{L}(c x)=c \mathcal{L}(x)$ for a scalar c.

Matrix and linear map

Let \mathcal{V} and \mathcal{W} be vector spaces, and consider a linear map \mathcal{L} from \mathcal{V} to \mathcal{W}. In particular, let $\mathcal{V}=\mathbb{R}^{p}$ and $\mathcal{W}=\mathbb{R}^{n}$, then $\mathcal{L}(\mathbf{0})=\mathbf{0}$, and

$$
\mathcal{L}\left(a x+b x^{\prime}\right)=a \mathcal{L}(x)+b \mathcal{L}\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in \mathbb{R}^{p}$ and all $a, b \in \mathbb{R}$.
Thus, $n \times p$ matrix can be regarded as a linear map. Moreover, we can consider one-to-one correspondence between linear map and matrix.

Matrix and linear map

- Matrix addition: let A and B be $n \times p$ matrix, and denote the corresponding linear map by \mathcal{L}_{A} and $\mathcal{L}_{B} . A+B$ is also $n \times p$ matrix and \mathcal{L}_{A+B} be the correspondent linear map to $A+B$. Then, $\mathcal{L}_{A+B}=\mathcal{L}_{A}+\mathcal{L}_{B}$.

$$
(A+B) x=A x+B x
$$

Matrix and linear map

- Matrix multiplication: let A and B be $n \times k$ and $k \times p$ matrix, and denote the corresponding linear map by \mathcal{L}_{A} and $\mathcal{L}_{B} . A B$ is $n \times p$ matrix and $\mathcal{L}_{A B}$ be the correspondent linear map to $A B$. Then, $\mathcal{L}_{A B}=\mathcal{L}_{A} \circ \mathcal{L}_{B}$ (Composition of functions: 합성함수)

$$
x \mapsto A x \mapsto B(A x)
$$

$$
W \in \mathbb{R}^{n \times p} \text { if and only if } W: \mathbb{R}^{p} \mapsto \mathbb{R}^{n} \text { is linear. }
$$

- When $n<p W$ is called a (linear) encoder (압축).
- When $n>p W$ is called a (linear) decoder (해제).

Let $W=\left[W_{1}, \cdots, W_{p}\right] \in \mathbb{R}^{n \times p}$ and $a=\left(a_{1}, \cdots, a_{p}\right)^{\top} \in \mathbb{R}^{p}$.

$$
W(a)=a_{1} W_{1}+\cdots+a_{p} W_{p} \in \mathbb{R}^{n}
$$

$W(a)$ is the image of W or the range of \mathcal{L}_{W}. Note that $W(a)$ is a linear combination of column vectors of W. Suppose that we gather all elements of $W(a)$ when $n>p$. This recovers \mathbb{R}^{n} ? Or when $n \leq p$ this always recovers \mathbb{R}^{n} ?.

Spanned column space

- Spanned column space of W is the range of W or \mathcal{L}_{W}.

$$
\mathcal{C}(W)=\left\{\sum_{j=1}^{p} a_{j} W_{j} \in \mathbb{R}^{n}: a_{j} \in \mathbb{R}, 1 \leq j \leq p\right\}
$$

- It is clear that $\mathcal{C}(W) \subset \mathbb{R}^{n}$.
- When $n>p$, how much rich $\mathcal{C}(W)$ is? (the dimension of $\mathcal{C}(W)$)
linear independence
Let V be vector space. A linear independence or linear relation among vectors $w_{1}, \ldots, w_{n} \in V$ is $a_{1} w_{1}+\cdots+a_{n} w_{n}=\mathbf{0}$ implies that all a_{k} s are zero.
dimension of vector space V
Let V be vector space and $v_{1}, \ldots, v_{k} \in V$. The dimension of V is the maximum number of k where v_{1}, \ldots, v_{k} are linearly independent.
dimension of vector space $\mathcal{C}(W)$
The dimension of $\mathcal{C}(W)$ is the maximum number of k where W_{1}, \ldots, W_{k} are linearly independent. The dimension of $\mathcal{C}(W)$ is called of the (column) rank of $W \operatorname{rank}(W)$. It is known that

$$
\operatorname{rank}(W)=\operatorname{rank}\left(W^{\top}\right)
$$

Basis of V

If $w_{1}, \ldots, w_{n} \in V$ are linearly independent, and $\mathcal{C}\left(\left[w_{1}, \ldots, w_{n}\right]\right)=V$, then w_{1}, \ldots, w_{n} is called a basis of V . Here n is the dimension of V denoted by $\operatorname{dim}(V)$.

- Null space of $W \in \mathbb{R}^{n \times p}$:

$$
\mathcal{N}(W)=\left\{a \in \mathbb{R}^{p}: W a=0\right\}
$$

Dimensionality Theorem

$$
\operatorname{dim}(\mathcal{C}(W))+\operatorname{dim}(\mathcal{N}(W))=p
$$

When $\operatorname{dim}(\mathcal{C}(W))=p, W$ is called full-column rank.

Basis of \mathbb{R}^{n}

If $w_{1}, \ldots, w_{n} \in \mathbb{R}^{n}$ are linearly independent, then the set $\left\{w_{1}, \ldots, w_{n}\right\}$ is called a basis of \mathbb{R}^{n}. Note that basis is not unique.

Basis of \mathbb{R}^{n}

Recall that $W \in \mathbb{R}^{n \times p}$ is a linear map

$$
\mathcal{L}: a \in \mathbb{R}^{p} \mapsto W a \in \mathbb{R}^{n}
$$

We have seen that $\mathcal{C}(W)$ is the range of the \mathcal{L} and the richness of the space is measured by $\operatorname{dim}(\mathcal{C}(W))$, the column rank of W.

Matrix and linear map*

- Let $\left\{v_{1}, \cdots, v_{p}\right\}$ be ordered basis of \mathbb{R}^{p} and $w_{1}, \cdots, w_{p} \in \mathbb{R}^{n}$. Then, there exists \mathcal{L} such that it is the unique linear map from \mathbb{R}^{p} to \mathbb{R}^{n} and $\mathcal{L}\left(v_{j}\right)=w_{j}$. (The image of the basis in \mathbb{R}^{p} uniquely determines the corresponding linear map.)
- (Matrix representation) Let $\left\{v_{1}, \cdots, v_{p}\right\}$ and \mathbb{R}^{p} and $\left\{w_{1}, \cdots, w_{n}\right\} \in \mathbb{R}^{n}$ be basis of \mathbb{R}^{p} and \mathbb{R}^{n}. A linear map \mathcal{L} is completely characterized by p elements, r_{j}. Moreover r_{j} 's are uniquely represented by $\left\{w_{1}, \cdots, w_{n}\right\}$. That is, $\mathcal{L}\left(v_{j}\right)=r_{j}=\sum_{i=1}^{n} a_{i j} w_{i}$ for $j=1, \cdots, p$. That is, the matrix $\left(a_{i j}\right)$ is the representation of the linear map \mathcal{L} with the basis $\left\{v_{1}, \cdots, v_{p}\right\}$ and $\left\{w_{1}, \cdots, w_{n}\right\}$.

Useful linear map

- Identity linear map: identity matrix
- Elementary operations:
- Let $e_{j} \in \mathbb{R}^{p}$ is a unit column vector where the j th element is 1 and $\pi=\left(\pi_{1}, \cdots, \pi_{n}\right)$ is a permutation of $(1, \cdots, p)$, where $\pi_{j} \in\{1, \cdots, p\}$ for $j=1, \cdots, n$. Then, $E_{\pi}=\left(e_{\pi_{1}}, \cdots, e_{\pi_{n}}\right)^{\prime} \in \mathbb{R}^{n} \times \mathbb{R}^{p}$ is a linear map that rearranges the elements according to π.

$$
E_{\pi}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad x=\left(x_{1}, x_{2}, x_{3}\right)^{\prime}
$$

then $E_{\pi} x=\left(x_{3}, x_{1}, x_{2}\right)^{\prime}$

Useful linear map*

- Elementary operations:
- Let $n=p$ and $E_{\pi}=\left(0, \cdots, 0, e_{\pi_{k}}, 0, \cdots, 0\right)^{\prime} \in \mathbb{R}^{n} \times \mathbb{R}^{p}$. What is this operation $I+a E_{\pi}$ with $a \in \mathbb{R}$?
- Suppose that $E_{\pi} X$ is well defined, then what is the operational meaning of the E_{π} ?
- Suppose that $X E_{\pi}^{\prime}$ is well defined, the what is the operational meaning of E_{π}^{\prime} ?

