Linear algebra for computational statistics III

Jong-June Jeon
September, 2022
Department of Statistics, University of Seoul

Things to know

- basic operation of matrix
- spanning space, null space
- projection and geometry
- linear map and matrix

Decomposition of matrix

Decomposition of linear maps

Step 3

행렬이 대응시키는 변환을 분해하는 과정을 소개한다. 먼저 내적을 도입하여, 벡터공간 위에서 거리와 각도가 자연스럽게 정의되는 과정을 살펴본다. 다음으로 대칭인 반양정치행렬의 분해를 특별한 직교 선형변환의 분해로 이해할 수 있으며, 이를 통해 행렬의 대 응을 분해하여 해석한다. 여기서는 내적공간(inner product space)와 정사형(projection), Spectral Decomposition, Singular Value Decomposition을 배운다.

Inner product An inner product space is a vector space V with an inner product:

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}
$$

that satisfies the following three properties for all vectors $x, y, z \in V$ and all scalars $a \in \mathbb{R}$.

- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$
- Linearity:

$$
\begin{aligned}
\langle a x, y\rangle & =a\langle x, y\rangle \\
\langle x+y, z\rangle & =\langle x, z\rangle+\langle y, z\rangle
\end{aligned}
$$

- Positive-definite: $\langle x, x\rangle>0, x \in V-\{0\}$
example

Suppose that $a, b \in \mathbb{R}^{p}$

- Let $\langle a, b\rangle=a^{\top} b$. Then the $\langle\cdot, \cdot\rangle$ is inner product?
- Let $H \in \mathbb{R}^{p \times p}$ is symmetric and $\langle a, b\rangle=a^{\top} H b$. Then the $\langle\cdot, \cdot\rangle$ is inner product?
- If H is positive definite, ...
(NOTE) Vector space에는 Addition과 scalar multiplication 연산만 정의되어 있다. Vector space 위에 inner production 연산을 정 의해놓으면, Vector space 위에 각도를 정의할 수 있다. 한편 inner production 연산이 주어지면 원소의 길이(norm) 혹은 두 원소간의 거리 (distance)를 정의할 수 있다.
- For $x, y \in V$ define $\langle x, y\rangle=x^{\top} y$. If $x^{\top} y=0$ we write $x \perp y$
- We define the norm of $x \in V$ by $\|x\|=\sqrt{x^{\top} x}$
- We can define the distance between x and y by $d(x, y)=\|x-y\|$

Hereafter, we use the above definition of the inner product and the norm in our vector space V.
angle and inner product (law of cosine)

- Let a point A, B, C in \mathbb{R}^{2} and C is the origin and B is a point on x-axis.
- Let the length of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{CA}}$ be c, a, and b, respectively.
- Let the angle $\angle C$ be θ.
- The point A is $(b \cos \theta, b \sin \theta)$, and the point $B=(a, 0)$. Thus,

$$
\begin{aligned}
c^{2} & =(b \cos \theta-a)^{2}+b^{2} \sin ^{2} \theta \\
& =a^{2}+b^{2}-2 a b \cos \theta
\end{aligned}
$$

angle and inner product

Because the law of cosine is the fact derived only from geometry, we can apply the law of cosine to a Euclidean space.
Consider a vector u, v, and $u-v$ and denote the norms of the vectors by $\|u\|,\|v\|$, and $\|u-v\|$, respectively. Note that $\|u\|,\|v\|$, and $\|u-v\|$ correspond to b, a, and c. By the law of cosine

$$
\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos (\theta)
$$

which reduces to

$$
u^{\top} v=\|u\|\|v\| \cos (\theta) .
$$

As a result the angle in \mathbb{R}^{p} are defined by the law of cosine.
angle and inner product Thus,

- $\cos (\theta)=u^{\top} v /(\|u\|\|v\|)$
- $u^{\top} v=0$ is regarded as $u \perp v$
ch) Let u and v be points on a unit sphere and let d be a Euclidean distance between u and v. Then,

$$
u^{\top} v=\cos (\theta)=1-\frac{1}{2} d^{2} .
$$

The equation shows the relationships of inner product, cosine similarity, and distance.
$\cos \theta=\left(\frac{x}{\|\alpha\|}\right)^{\top}\left(\frac{y}{\|y\|}\right)$

Projection

Suppose that V is an inner product vector space. Let $x, y \in V$ then there exists $\hat{y} \in \mathcal{C}(x)$ such that $(y-\hat{y}) \perp x$. That is y is decomposed into $y=\hat{y}+(y-\hat{y})$ with $\hat{y} \perp(y-\hat{y})$.

Figure 1: Illustration of projection via transpose operation
$y=a x+(y-a x)$ with $a=y^{\top} x /\|x\|^{2} \in \mathbb{R}$

Projection Let $y, x_{1}, \cdots, x_{k} \in V$ and suppose that x_{1}, \cdots, x_{k} are linearly independent. Consider $X=\left[x_{1}, \cdots, x_{k}\right]$ and $\mathcal{C}(X)$. Then, how can we find $\hat{y} \in \mathcal{C}(X)$ such that

$$
y=\hat{y}+(y-\hat{y})
$$

satisfying $\hat{y} \perp(y-\hat{y})$?
The answer is the Projection map (matrix)!

Orthogonal Projection Let $x, y \in \mathbb{R}^{p}$ and consider Π, a linear map from \mathbb{R}^{p} to \mathbb{R}^{p}. The projection map of y onto $\mathcal{C}(x)$ satisfies the following properties:

- $\Pi y \in \mathcal{C}(x)$;
- $(\Pi y)^{\top} y=y^{\top}(\Pi y)=0$;
- $\Pi(\Pi y)=\Pi y$

Orthogonal Projection

Orthogonal projection is a linear map defined by Π : $V \mapsto V$ (in fact, we can understand the P as a matrix) such that $\Pi=\Pi^{2}=\Pi^{\top}$.

- Let $\Pi=x\left(x^{\top} x\right)^{-1} x^{\top}$ then $\Pi=\Pi^{2}=\Pi^{\top}$?
- $\Pi y \in \mathcal{C}(x)$ for $x \in V$?
- $\langle\Pi y, y-\Pi y\rangle=0$?

You can conclude that the Π is the orthogonal projection operator (onto $\mathcal{C}(x)$).

Orthogonal Projection

- Let $x, y \in \mathbb{R}^{n}$ and compute the projection of y onto $\mathcal{C}(x)$. Then, it is given by $\left(x\left(x^{\top} x\right)^{-1} x^{\top}\right) y$. Show that $x\left(x^{\top} x\right)^{-1} x^{\top}$ is a projection operator.
- Let $X \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^{n}$. Compute the projection of y onto $\mathcal{C}(X)$.
- Write an example and confirm the result numerically.

잠깐!

회귀모형의 OLS 를 돌이켜보자. Response vector $Y \in \mathbb{R}^{n}$ 과 predictor matrix $X \in \mathbb{R}^{n \times p}$ 일때, OLS 를 이용한 Y 값의 추정량은

$$
\hat{Y}=X\left(X^{\top} X\right)^{-1} X^{\top} Y \in \mathbb{R}
$$

로 주어진다. 여기서 $X\left(X^{\top} X\right)^{-1} X^{\top}$ 가 $\mathcal{C}(X)$ 에 Projection operator 고 $\hat{Y} \in \in \mathcal{C}(X)$ 이며 $(Y-\hat{Y}) \perp \hat{Y}$ 임을 알 수 있다.

Projection은 벡터 성분을 직교분해할 때 흔히 볼 수 있었던 연산이다.

Basic on undergraduate levels

- Symmetric Matrix
- Orthogonal Matrix

Orthogonal matrix

- Orthogonal matrix E : a square matrix satisfying

$$
E=\left[e_{1}, \cdots, e_{p}\right]
$$

where $e_{j}^{\top} e_{k}=0$ for $j \neq k$ and $\left\|e_{j}\right\|=1$ for all j.

- It is easily shown that $E^{\top} E=I$.
- Because $E\left(E^{\top} E\right)=E, E E^{\top}=I$.

That is, $E^{\top} E=E E^{\top}=I$, and E^{\top} is the inverse of E.

Orthogonal matrix (Isometric transformation)
Let $E \in \mathbb{R}^{p \times p}$ be orthogonal matrix and $x, y \in \mathbb{R}^{p} . d(x, y)=d(E x, E y)$?

$$
\begin{aligned}
d(x, y)^{2} & =(x-y)^{\top}(x-y)=(x-y)^{\top} E^{\top} E(x-y) \\
& =\|E(x-y)\|^{2}=d(E x, E y)^{2}
\end{aligned}
$$

The map \mathcal{L}_{E} preserves the distance (isometric). Actually, E is understood as the rotation map.

Orthogonal matrix (Rotation)

What is the geometrical meaning of the first column of an orthogonal matrix?
Let E be the orthogonal and $a_{1}=(1,0, \cdots, 0)$.

- $E a_{1}$ is the first column vector.
- In addition, $E a_{1}$ is the image of a linear map E for a_{1}, which is the first coordinate basis vector.
- That is, the first column vector is the transformed image of the first coordinate basis vector.

To sum up, each column of E denotes an image of each coordinate basis transformed by E. Since the transformed image is orthogonal to each other, the map can be regarded as a geometrical rotation.

Diagonal matrix
Let $D=\operatorname{diag}\left(d_{1}, \cdots, d_{p}\right) \in \mathbb{R}^{p \times p}$ be diagonal matrix and $x=\left(x_{1}, \cdots, x_{p}\right) \in \mathbb{R}^{p}$. Then,

$$
D x=\left(d_{1} x_{1}, \cdots, d_{p} x_{p}\right)^{\top}
$$

The map D is called the scaling map.
앞다행, 뒤다열!

Eigendecomposition

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric matrix. Then there exists an orthogonal matrix E and a diagonal matrix D (with real-valued elements) such that

$$
A=E D E^{\top}
$$

- Orthogonality of E : write

$$
E=\left[e_{1}, \cdots, e_{p}\right]
$$

then $e_{j}^{\top} e_{k}=0$ for $j \neq k$ and $\left\|e_{j}\right\|=1$ for all j.

- Projection onto $\mathcal{C}\left(e_{j}\right)$ is given by $e_{j}\left(e_{j}^{\top} e_{j}\right)^{-1} e_{j}^{\top}=e_{j} e_{j}^{\top}$

Eigendecomposition Suppose that A be a symmetric matrix. Let λ_{j} be the j th diagonal element of D, then we can write

$$
A=E D E^{\top}=\sum_{j=1}^{p} \lambda_{j} e_{j} e_{j}^{\top}
$$

We can know that A is the sum of orthogonal projection operators. $e_{j} \mathrm{~s}$ are eigenvector and λ_{j} is the associated eigenvalue. $\mathcal{C}\left(e_{j}\right)$ is eigenspace spaned by e_{j}.

For simplicity let A be 2×2 matrix.

- Let $D_{1}=\operatorname{diag}\left(\lambda_{1}, 0\right)$ and $D_{2}=\operatorname{diag}\left(\lambda_{2}, 0\right)$, then

$$
D_{1} E^{\top}=\lambda_{1}\binom{e_{1}^{\top}}{0} \text { and } D_{2} E^{\top}=\lambda_{2}\binom{0}{e_{2}^{\top}}
$$

- We can easily show that

$$
\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right)\binom{e_{1}^{\top}}{e_{2}^{\top}}=e_{1} e_{1}^{\top}+e_{2}^{\top} e_{2}
$$

Thus,

$$
A=E D E^{\top}=E\left(D_{1} E^{\top}+D_{2} E^{\top}\right)=\lambda_{1} e_{1} e_{1}^{\top}+\lambda_{2} e_{2}^{\top} e_{2}
$$

Eigendecomposition

This eigendecomposition can be viewed as the decomposition of a linear map:

$$
\mathcal{L}_{A}=\sum_{j=1}^{p} \lambda_{j} \mathcal{L}_{E_{j}},
$$

where $E_{j}=e_{j} e_{j}^{\top}$.
Note that

- projection onto $\mathcal{C}\left(e_{j}\right)$ is given by $e_{j}\left(e_{j}^{\top} e_{j}\right)^{-1} e_{j}^{\top}=e_{j} e_{j}^{\top}$

Therefore,

$$
\mathcal{L}_{A}(x)=\sum_{j=1}^{p} \lambda_{j} \mathcal{L}_{E_{j}}(x)
$$

where $\mathcal{L}_{E_{j}}(x)$ is projection onto the j th eigenspace.

Approximation of Linear map

Let $A^{(k)}=\sum_{j=1}^{k} \lambda_{j} e_{j} e_{j}^{\top}$ then $A^{(k)}$ approximates A ?

$$
\begin{aligned}
E D E^{\top} \mathbf{x} & =\left[e_{1}, \cdots, e_{p}\right] \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right)\left(\begin{array}{c}
e_{1}^{\top} \\
\vdots \\
e_{p}^{\top}
\end{array}\right) \mathbf{x} \\
& =\left[e_{1}, \cdots, e_{p}\right] \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right)\left(\begin{array}{c}
e_{1}^{\top} \mathbf{x} \\
\vdots \\
e_{p}^{\top} \mathbf{x}
\end{array}\right) \\
& =\left[e_{1}, \cdots, e_{p}\right]\left(\begin{array}{c}
\lambda_{1} e_{1}^{\top} \mathbf{x} \\
\vdots \\
\lambda_{p} e_{p}^{\top} \mathbf{x}
\end{array}\right) \\
& =\sum_{j=1}^{p} e_{j}\left(\lambda_{j} e_{j}^{\top} \mathbf{x}\right)=\left(\sum_{j=1}^{p} \lambda_{j} e_{j} e_{j}^{\top}\right) \mathbf{x}
\end{aligned}
$$

Eigendecomposition shows the linear map of a symmetric matrix as the composition of three operations:

$$
\begin{gathered}
A x=E D E^{\top} x \\
x \mapsto E^{\top} x \text { (rotation) } \mapsto D\left(E^{\top} x\right) \text { (scaling) } \\
\mapsto E\left(D E^{\top} x\right) \text { (reverse rotation) }
\end{gathered}
$$

Let \mathbf{A} be symmetric and nonnegative definite matrix. Then the minimum eigenvalue is positive if and only if \mathbf{A} is positive definite.
pf) Let $\lambda_{\min }$ be the minumum eigenvalue of \mathbf{A}. Assume that $\lambda_{\text {min }}>0$. Let $\mathbf{x}=\sum_{j=1} a_{j} e_{j} \neq 0$, then

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\sum_{j=1}^{p} \lambda_{j}\left(e_{j}^{\top} \mathbf{x}\right)^{2}=\sum_{j=1}^{p} \lambda_{j} a_{j}^{2}>0 .
$$

Assume that \mathbf{A} is pd matrix. WLOG, let λ_{p} be the minimum eigenvalue of \mathbf{A}. Then,

$$
e_{p}^{\top} \mathbf{A} e_{p}=\sum_{j=1} \lambda_{j}\left(e_{j}^{\top} e_{p}\right)^{2}=\lambda_{p}>0 .
$$

Inverse matrix of positive definite matrix
The inverse matrix of such \mathbf{A} is given by

$$
\mathbf{A}^{-1}=\mathbf{E} D^{-1} \mathbf{E}^{\top}
$$

pf) $\mathbf{E} D^{-1} \mathbf{E}^{\top} \mathbf{A}=\mathbf{E} D^{-1} \underbrace{\mathbf{E}^{\top} \mathbf{E}}_{=I} D \mathbf{E}^{\top}=I$
and $\mathbf{A E} D^{-1} \mathbf{E}^{\top}=\mathbf{E} D \underbrace{\mathbf{E}^{\top} \mathbf{E}}_{=I} D^{-1} \mathbf{E}^{\top}=I$. By definition of the inverse matrix, we obtain the result.

잠깐!

특별히 pd matrix $A \in \mathbb{R}^{p \times p}$ 에 대해서

$$
\lambda_{\min }=\min _{x} \frac{x^{\top} A x}{\|x\|^{2}}, \quad \lambda_{\max }=\max _{x} \frac{x^{\top} A x}{\|x\|^{2}}
$$

라 놓으면 $\lambda_{\max } \geq \lambda_{\min }>0$ 이며, $\lambda_{\max }, \lambda_{\min }$ 각각 A 의 maximum eigenvalue, minimum eigenvalue에 해당한다. 한편 pd matrix A 에서 Eigenmatrix의 열 $e_{1}, \cdots e_{p}$ 는 다음과 같이 구할 수 있다.

- $e_{1}=\operatorname{argmax}_{x \in \mathbb{R}^{p}} \frac{x^{\top} A x}{\|x\|^{2}}$
- $e_{2}=\operatorname{argmax}_{x \in \mathbb{R}^{p}: x \perp e_{1}} \frac{x^{\top} A x}{\|x\|^{2}}$
- $e_{3}=\operatorname{argmax}_{x \in \mathbb{R}^{p}: x \perp \mathcal{C}\left(\left[e_{1}, e_{2}\right]\right)} \frac{x^{\top} A x}{\|x\|^{2}}$

Singular Value decomposition

Let A be $n \times p$ a real valued matrix. Then,

$$
A=\mathbf{U D V}^{\top}
$$

where \mathbf{U} is an $n \times n$ orthogonal matrix, V is an $p \times p$ orthogonal matrix and D is a $n \times p$ rectangular diagonal matrix where $(D)_{i j}=0$ for $i \neq j$ and $(D)_{i i} \geq 0$ for $1 \leq i \leq \min (n, p)$.

- $A A^{\top}=U \bar{D} U^{\top}\left(\bar{D}=D D^{\top}\right.$ is diagonal matrix $)$
- $A^{\top} A=V \tilde{D} V^{\top}$ ($\tilde{D}=D^{\top} D$ is diagonal matrix)

Thus, U and V are eigenmatrix of $A A^{\top}$ and $A^{\top} A$, respectively.

The singular value decomposition gives an insight for understanding of linear map. Let A be $n \times p(n>p)$ matrix which is a linear map from \mathbb{R}^{p} and \mathbb{R}^{n}.

$$
\begin{aligned}
A \mathbf{x} & =U D V^{\top} \mathbf{x}=U\left(\begin{array}{c}
d_{1} \mathbf{v}_{1}^{\top} \mathbf{x} \\
\vdots \\
d_{p} \mathbf{v}_{p}^{\top} \mathbf{x} \\
\mathbf{0}_{\mathbf{n}-\mathbf{p}}
\end{array}\right) \\
& =\sum_{j=1}^{p}\left(d_{j} \mathbf{v}_{j}^{\top} \mathbf{x}\right) U_{j}
\end{aligned}
$$

A linear map A is interpreted as the compositions of

- projection map onto $\mathcal{C}(V)$ and
- scaling map and
- rotation map (scale invariant map).

Singular Value decomposition: Data representation

$$
\left.X=U D V^{\top} \text { (Data matrix }\right)
$$

Let x_{i}^{\top} and u_{i}^{\top} be the i th row vectors of X and U. Since $x_{i}^{\top}=u_{i}^{\top} D V^{\top}$,

$$
x_{i}=V\left(D^{\top} u_{i}\right)
$$

Let $d_{i}=(D)_{i i}$ for $1 \leq i \leq p$ and $D^{\top} u_{i}=\left(d_{1} u_{i 1}, \cdots, d_{p} u_{i p}\right)^{\top}$. Then

$$
x_{i}=V_{1} \beta_{1}+\cdots+V_{p} \beta_{p},
$$

where $\beta_{j}=d_{j} u_{i j}$. Note that $\left(\beta_{1}, \cdots, \beta_{p}\right)^{\top}$ be the representation of x_{i} with respect to V_{1}, \cdots, V_{p}. Thus, we know that $D^{\top} u_{i}$ is the representation of x_{i} with respect to V.

Singular Value decomposition: Data representation

- Suppose that X is normalized. Then $X^{\top} X / n$ is the sample covariance matrix.
- PCA employs the eigenvector of the sample covariance, $X^{\top} X / n$:

$$
\Sigma=E \Lambda E^{\top}=X^{\top} X / n=V\left(\left(D^{\top} D\right) / n\right) V^{\top}
$$

That is, V of SVD is equal to E of PCA.

