Linear algebra for computational statistics III

Jong-June Jeon September, 2022

Department of Statistics, University of Seoul

Things to know

- basic operation of matrix
- spanning space, null space
- projection and geometry
- linear map and matrix

Decomposition of matrix

Decomposition of linear maps

Step 3

행렬이 대응시키는 변환을 분해하는 과정을 소개한다. 먼저 내적을 도입하여, 벡터공간 위에서 거리와 각도가 자연스럽게 정의되는 과정을 살펴본다. 다음으로 대칭인 반양정치행렬의 분해를 특별한 직교 선형변환의 분해로 이해할 수 있으며, 이를 통해 행렬의 대 응을 분해하여 해석한다. 여기서는 내적공간(inner product space)와 정사형(projection), Spectral Decomposition, Singular Value Decomposition을 배운다. Inner product An inner product space is a vector space V with an inner product:

 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$

that satisfies the following three properties for all vectors $x, y, z \in V$ and all scalars $a \in \mathbb{R}$.

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity:

$$\begin{array}{lll} \langle ax,y\rangle &=& a\langle x,y\rangle\\ \langle x+y,z\rangle &=& \langle x,z\rangle+\langle y,z\rangle \end{array}$$

• Positive-definite: $\langle x, x \rangle > 0, x \in V - \{0\}$

example

Suppose that $a, b \in \mathbb{R}^p$

- Let $\langle a, b \rangle = a^{\top} b$. Then the $\langle \cdot, \cdot \rangle$ is inner product?
- Let $H \in \mathbb{R}^{p \times p}$ is symmetric and $\langle a, b \rangle = a^{\top}Hb$. Then the $\langle \cdot, \cdot \rangle$ is inner product?
- If H is positive definite, ...

(NOTE) Vector space에는 Addition과 scalar multiplication 연산만 정의되어 있다. Vector space 위에 inner production 연산을 정 의해놓으면, Vector space 위에 각도를 정의할 수 있다. 한편 inner production 연산이 주어지면 원소의 길이(norm) 혹은 두 원소간의 거리 (distance)를 정의할 수 있다.

- For $x, y \in V$ define $\langle x, y \rangle = x^\top y$. If $x^\top y = 0$ we write $x \perp y$
- We define the norm of $x \in V$ by $\|x\| = \sqrt{x^\top x}$
- We can define the distance between x and y by $d(x,y) = \|x-y\|$

Hereafter, we use the above definition of the inner product and the norm in our vector space V.

angle and inner product (law of cosine)

- Let a point A, B, C in \mathbb{R}^2 and C is the origin and B is a point on x-axis.
- Let the length of \overline{AB} , \overline{BC} and \overline{CA} be c, a, and b, respectively.
- Let the angle $\angle C$ be θ .
- The point A is $(b\cos\theta, b\sin\theta)$, and the point B = (a, 0). Thus,

$$c^{2} = (b\cos\theta - a)^{2} + b^{2}\sin^{2}\theta$$
$$= a^{2} + b^{2} - 2ab\cos\theta$$

angle and inner product

Because the law of cosine is the fact derived only from geometry, we can apply the law of cosine to a Euclidean space.

Consider a vector u, v, and u - v and denote the norms of the vectors by ||u||, ||v||, and ||u - v||, respectively. Note that ||u||, ||v||, and ||u - v|| correspond to b, a, and c. By the law of cosine

$$||u - v||^{2} = ||u||^{2} + ||v||^{2} - 2||u|| ||v|| \cos(\theta),$$

which reduces to

$$u^{\top}v = \|u\|\|v\|\cos(\theta).$$

As a result the angle in \mathbb{R}^p are defined by the law of cosine.

angle and inner product Thus,

- $\cos(\theta) = u^{\top} v / (\|u\| \|v\|)$
- $u^{\top}v = 0$ is regarded as $u \perp v$

ch) Let u and v be points on a unit sphere and let d be a Euclidean distance between u and v. Then,

$$u^{\top}v = \cos(\theta) = 1 - \frac{1}{2}d^2.$$

The equation shows the relationships of inner product, cosine similarity, and distance.

Projection

Suppose that V is an inner product vector space. Let $x, y \in V$ then there exists $\hat{y} \in C(x)$ such that $(y - \hat{y}) \perp x$. That is y is decomposed into $y = \hat{y} + (y - \hat{y})$ with $\hat{y} \perp (y - \hat{y})$.

Transpose and projection (figure will be corrected!)

Figure 1: Illustration of projection via transpose operation

$$y = ax + (y - ax)$$
 with $a = y^{\top}x/||x||^2 \in \mathbb{R}$

Projection Let $y, x_1, \dots, x_k \in V$ and suppose that x_1, \dots, x_k are linearly independent. Consider $\overline{X} = [x_1, \dots, x_k]$ and $\mathcal{C}(X)$. Then, how can we find $\hat{y} \in \mathcal{C}(X)$ such that

$$y = \hat{y} + (y - \hat{y})$$

satisfying $\hat{y} \perp (y - \hat{y})$?

The answer is the Projection map (matrix)!

<u>Orthogonal Projection</u> Let $x, y \in \mathbb{R}^p$ and consider Π , a linear map from \mathbb{R}^p to \mathbb{R}^p . The projection map of y onto $\mathcal{C}(x)$ satisfies the following properties:

- $\Pi y \in \mathcal{C}(x);$
- $(\Pi y)^{\top} y = y^{\top} (\Pi y) = 0;$
- $\Pi(\Pi y) = \Pi y$

Orthogonal Projection

Orthogonal projection is a linear map defined by $\Pi: V \mapsto V$ (in fact, we can understand the P as a matrix) such that $\Pi = \Pi^2 = \Pi^{\top}$.

- Let $\Pi = x(x^{\top}x)^{-1}x^{\top}$ then $\Pi = \Pi^2 = \Pi^{\top}$?
- $\Pi y \in \mathcal{C}(x)$ for $x \in V$?
- $\langle \Pi y, y \Pi y \rangle = 0$?

You can conclude that the Π is the orthogonal projection operator (onto $\mathcal{C}(x)$).

Orthogonal Projection

- Let $x, y \in \mathbb{R}^n$ and compute the projection of y onto $\mathcal{C}(x)$. Then, it is given by $(x(x^{\top}x)^{-1}x^{\top})y$. Show that $x(x^{\top}x)^{-1}x^{\top}$ is a projection operator.
- Let $X \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^n$. Compute the projection of y onto $\mathcal{C}(X)$.
- Write an example and confirm the result numerically.

잠깐!

회귀모형의 OLS를 돌이켜보자. Response vector $Y \in \mathbb{R}^n$ 과 predictor matrix $X \in \mathbb{R}^{n \times p}$ 일때, OLS를 이용한 Y값의 추정량은

 $\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y \in \mathbb{R}$

로 주어진다. 여기서 $X(X^{\top}X)^{-1}X^{\top}$ 가 $\mathcal{C}(X)$ 에 Projection operator 고 $\hat{Y} \in \mathcal{C}(X)$ 이며 $(Y - \hat{Y}) \perp \hat{Y}$ 임을 알 수 있다.

Projection은 벡터 성분을 직교분해할 때 흔히 볼 수 있었던 연산이다.

- Symmetric Matrix
- Orthogonal Matrix

Orthogonal matrix

• Orthogonal matrix E: a square matrix satisfying

$$E = [e_1, \cdots, e_p],$$

where
$$e_j^{\top} e_k = 0$$
 for $j \neq k$ and $||e_j|| = 1$ for all j .

- It is easily shown that $E^{\top}E = I$.
- Because $E(E^{\top}E) = E$, $EE^{\top} = I$.

That is, $E^{\top}E = EE^{\top} = I$, and E^{\top} is the inverse of E.

Orthogonal matrix (Isometric transformation)

Let $E \in \mathbb{R}^{p \times p}$ be orthogonal matrix and $x, y \in \mathbb{R}^p$. d(x, y) = d(Ex, Ey)?

$$d(x,y)^{2} = (x-y)^{\top}(x-y) = (x-y)^{\top}E^{\top}E(x-y)$$
$$= ||E(x-y)||^{2} = d(Ex,Ey)^{2}$$

The map \mathcal{L}_E preserves the distance (isometric). Actually, E is understood as the rotation map.

Orthogonal matrix (Rotation)

What is the geometrical meaning of the first column of an orthogonal matrix?

Let E be the orthogonal and $a_1 = (1, 0, \dots, 0)$.

- Ea_1 is the first column vector.
- In addition, Ea_1 is the image of a linear map E for a_1 , which is the first coordinate basis vector.
- That is, the first column vector is the transformed image of the first coordinate basis vector.

To sum up, each column of E denotes an image of each coordinate basis transformed by E. Since the transformed image is orthogonal to each other, the map can be regarded as a geometrical rotation.

Diagonal matrix

Let $D = diag(d_1, \dots, d_p) \in \mathbb{R}^{p \times p}$ be diagonal matrix and $x = (x_1, \dots, x_p) \in \mathbb{R}^p$. Then,

$$Dx = (d_1 x_1, \cdots, d_p x_p)^\top$$

The map D is called the scaling map.

앞다행, 뒤다열!

Eigendecomposition

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric matrix. Then there exists an orthogonal matrix E and a diagonal matrix D (with real-valued elements) such that

$$A = EDE^{\top}$$

• Orthogonality of E: write

$$E = [e_1, \cdots, e_p]$$

then $e_j^{\top} e_k = 0$ for $j \neq k$ and $||e_j|| = 1$ for all j.

• Projection onto $\mathcal{C}(e_j)$ is given by $e_j(e_j^\top e_j)^{-1}e_j^\top = e_je_j^\top$

Eigendecomposition Suppose that A be a symmetric matrix. Let λ_j be the *j*th diagonal element of D, then we can write

$$A = EDE^{\top} = \sum_{j=1}^{p} \lambda_j e_j e_j^{\top}$$

We can know that A is the sum of orthogonal projection operators. e_j s are eigenvector and λ_j is the associated eigenvalue. $C(e_j)$ is eigenspace spaned by e_j .

For simplicity let A be 2×2 matrix.

• Let $D_1 = \operatorname{diag}(\lambda_1, 0)$ and $D_2 = \operatorname{diag}(\lambda_2, 0)$, then

$$D_1 E^{\top} = \lambda_1 \begin{pmatrix} e_1^{\top} \\ 0 \end{pmatrix}$$
 and $D_2 E^{\top} = \lambda_2 \begin{pmatrix} 0 \\ e_2^{\top} \end{pmatrix}$

• We can easily show that

$$\left(\begin{array}{cc} e_1 & e_2 \end{array}\right) \left(\begin{array}{cc} e_1^\top \\ e_2^\top \end{array}\right) = e_1 e_1^\top + e_2^\top e_2$$

Thus,

$$A = EDE^{\top} = E(D_1E^{\top} + D_2E^{\top}) = \lambda_1 e_1 e_1^{\top} + \lambda_2 e_2^{\top} e_2$$

Eigendecomposition

This eigendecomposition can be viewed as the decomposition of a linear map:

$$\mathcal{L}_A = \sum_{j=1}^p \lambda_j \mathcal{L}_{E_j},$$

where $E_j = e_j e_j^{\top}$.

Note that

• projection onto $\mathcal{C}(e_j)$ is given by $e_j(e_j^\top e_j)^{-1}e_j^\top = e_je_j^\top$

Therefore,

$$\mathcal{L}_A(x) = \sum_{j=1}^p \lambda_j \mathcal{L}_{E_j}(x),$$

where $\mathcal{L}_{E_j}(x)$ is projection onto the *j*th eigenspace.

Let $A^{(k)} = \sum_{j=1}^{k} \lambda_j e_j e_j^{\top}$ then $A^{(k)}$ approximates A?

$$\begin{split} EDE^{\top}\mathbf{x} &= [e_1, \cdots, e_p] \mathsf{diag}(\lambda_1, \cdots, \lambda_p) \begin{pmatrix} e_1^{\top} \\ \vdots \\ e_p^{\top} \end{pmatrix} \mathbf{x} \\ &= [e_1, \cdots, e_p] \mathsf{diag}(\lambda_1, \cdots, \lambda_p) \begin{pmatrix} e_1^{\top} \mathbf{x} \\ \vdots \\ e_p^{\top} \mathbf{x} \end{pmatrix} \\ &= [e_1, \cdots, e_p] \begin{pmatrix} \lambda_1 e_1^{\top} \mathbf{x} \\ \vdots \\ \lambda_p e_p^{\top} \mathbf{x} \end{pmatrix} \\ &= \sum_{j=1}^p e_j (\lambda_j e_j^{\top} \mathbf{x}) = (\sum_{j=1}^p \lambda_j e_j e_j^{\top}) \mathbf{x}, \end{split}$$

Eigendecomposition shows the linear map of a symmetric matrix as the composition of three operations:

$$Ax = EDE^{\top}x$$

$$x \mapsto E^{\top}x \text{ (rotation)} \mapsto D(E^{\top}x) \text{ (scaling)} \\ \mapsto E(DE^{\top}x) \text{ (reverse rotation)}$$

Inverse matrix of positive definite matrix

Let A be symmetric and nonnegative definite matrix. Then the minimum eigenvalue is positive if and only if A is positive definite.

pf) Let λ_{min} be the minumum eigenvalue of **A**. Assume that $\lambda_{min} > 0$. Let $\mathbf{x} = \sum_{j=1}^{j} a_j e_j \neq 0$, then

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{j=1}^{p} \lambda_j (e_j^{\top} \mathbf{x})^2 = \sum_{j=1}^{p} \lambda_j a_j^2 > 0.$$

Assume that A is pd matrix. WLOG, let λ_p be the minimum eigenvalue of A. Then,

$$e_p^{\top} \mathbf{A} e_p = \sum_{j=1} \lambda_j (e_j^{\top} e_p)^2 = \lambda_p > 0.$$

Inverse matrix of positive definite matrix

The inverse matrix of such \mathbf{A} is given by

$$\mathbf{A}^{-1} = \mathbf{E} D^{-1} \mathbf{E}^{\top}.$$

pf)
$$\mathbf{E}D^{-1}\mathbf{E}^{\top}\mathbf{A} = \mathbf{E}D^{-1}\underbrace{\mathbf{E}^{\top}\mathbf{E}}_{=I}D\mathbf{E}^{\top} = I$$

and $\mathbf{A}\mathbf{E}D^{-1}\mathbf{E}^{\top} = \mathbf{E}D\underbrace{\mathbf{E}^{\top}\mathbf{E}}_{=I}D^{-1}\mathbf{E}^{\top} = I$. By definition of the inverse matrix, we obtain the result.

잠깐!

특별히 pd matrix $A \in \mathbb{R}^{p \times p}$ 에 대해서

$$\lambda_{\min} = \min_{x} \frac{x^{\top} A x}{\|x\|^2}, \quad \lambda_{\max} = \max_{x} \frac{x^{\top} A x}{\|x\|^2}$$

라 놓으면 $\lambda_{\max} \ge \lambda_{\min} > 0$ 이며, λ_{\max} , λ_{\min} 각각 A의 maximum eigenvalue, minimum eigenvalue에 해당한다. 한편 pd matrix A에서 Eigenmatrix의 열 $e_1, \dots e_p$ 는 다음과 같이 구할 수 있다.

• $e_1 = \operatorname{argmax}_{x \in \mathbb{R}^p} \frac{x^\top Ax}{\|x\|^2}$ • $e_2 = \operatorname{argmax}_{x \in \mathbb{R}^p: x \perp e_1} \frac{x^\top Ax}{\|x\|^2}$ • $e_3 = \operatorname{argmax}_{x \in \mathbb{R}^p: x \perp C([e_1, e_2])} \frac{x^\top Ax}{\|x\|^2}$ • \cdots Singular Value decomposition

Let A be $n \times p$ a real valued matrix. Then,

 $A = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$

where U is an $n \times n$ orthogonal matrix, V is an $p \times p$ orthogonal matrix and D is a $n \times p$ rectangular diagonal matrix where $(D)_{ij} = 0$ for $i \neq j$ and $(D)_{ii} \ge 0$ for $1 \le i \le \min(n, p)$.

•
$$AA^{\top} = U\bar{D}U^{\top}$$
 ($\bar{D} = DD^{\top}$ is diagonal matrix)

• $A^{\top}A = V\tilde{D}V^{\top}$ ($\tilde{D} = D^{\top}D$ is diagonal matrix)

Thus, U and V are eigenmatrix of AA^{\top} and $A^{\top}A$, respectively.

The singular value decomposition gives an insight for understanding of linear map. Let A be $n \times p$ (n > p) matrix which is a linear map from \mathbb{R}^p and \mathbb{R}^n .

$$A\mathbf{x} = UDV^{\top}\mathbf{x} = U \begin{pmatrix} d_1 \mathbf{v}_1^{\top} \mathbf{x} \\ \vdots \\ d_p \mathbf{v}_p^{\top} \mathbf{x} \\ \mathbf{0}_{n-p} \end{pmatrix}$$
$$= \sum_{j=1}^p (d_j \mathbf{v}_j^{\top} \mathbf{x}) U_j$$

A linear map \boldsymbol{A} is interpreted as the compositions of

- projection map onto $\mathcal{C}(V)$ and
- scaling map and
- rotation map (scale invariant map).

 $X = UDV^{\top}$ (Data matrix)

Let x_i^\top and u_i^\top be the ith row vectors of X and U. Since $x_i^\top = u_i^\top DV^\top,$

 $x_i = V(D^\top u_i)$

Let $d_i = (D)_{ii}$ for $1 \le i \le p$ and $D^{\top} u_i = (d_1 u_{i1}, \cdots, d_p u_{ip})^{\top}$. Then

 $x_i = V_1 \beta_1 + \dots + V_p \beta_p,$

where $\beta_j = d_j u_{ij}$. Note that $(\beta_1, \dots, \beta_p)^{\top}$ be the representation of x_i with respect to V_1, \dots, V_p . Thus, we know that $D^{\top} u_i$ is the representation of x_i with respect to V.

Singular Value decomposition: Data representation

- Suppose that X is normalized. Then $X^{\top}X/n$ is the sample covariance matrix.
- PCA employs the eigenvector of the sample covariance, $X^{\top}X/n$:

$$\Sigma = E\Lambda E^{\top} = X^{\top}X/n = V((D^{\top}D)/n)V^{\top}$$

That is, V of SVD is equal to E of PCA.