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Dual ascent method

We consider the equality-constrained convex optimization problem

min f(x) (1)

subject to Ax = b,

where x ∈ Rn, A ∈ Rm×n and f is convex function. The Lagrangian is

L(x, ν) = f(x) + ν>(Ax− b).

If there exist x∗ and ν∗ such that ∇f(x∗) + A>ν∗ = 0 and Ax∗ = b then x∗ is the solution of

the primal problem by the KKT conditions.
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The dual problem is given by

max
ν

inf
x
L(x, ν).

If the strong duality holds, the optimal x∗ satisfies

x∗ = argminxL(x, ν∗),

where ν∗ is the optimal solution of the dual problem. The strong duality means that we can also

solve the primal problem through the dual problem.
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Since the dual function is always concave, we can maximize the dual function by the gradient

ascent method under regularity conditions. The dual ascent method consists of two parts:

• evaluation of the dual function from the Lagrangian function (minimization)

g(νk) = min
x
L(x, νk)

• computation of the gradient of the dual function and update the dual solution.

νk+1 := νk + ρ∇g(νk),

where ρ > 0 is a learning rate.
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Gradient of g

• The dual function g(νk) is computed by g(νk) = L(xk+1, νk), where

xk+1 = argminxL(x, νk). Note that xk+1 is a function of νk.

• Let x∗(ν) = argminxL(x, ν). Then, g(ν) = L(x∗(ν), ν). The gradient ∇g(ν) is given by

∇g(ν) =
∂L(x∗(ν), ν)

∂ν
=
∂L(x∗, ν)

∂x

∂x∗(ν)

∂ν
+
∂L(x∗, ν)

∂ν

= 0× ∂L(x∗, ν)

∂x
+ (Ax− b)

= (Ax− b),

because x∗ is the minimizer of L(x, ν) for each ν. Thus,

∇g(νk) = Axk+1 − b
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Dual Ascent Method for (1)

(1) Set k = 0 and ν(k).

(2) x(k+1) = argminx f(x) + ν>(Ax− b)
(3) ν(k+1) = ν(k) + ρ(Ax(k+1) − b)
(4) k ← k + 1 and check the convergence of x(k) and ν(k).

(5) Repeat (2)-(4) until the solutions are converge.
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Example 1 (Dual Decomposition)

Let f : Rn 7→ R and f is separable, that is f(x) = f1(x1) + · · ·+ fk(xk), where fi : Rni 7→ R,

xi ∈ Rni and
∑k
i=1 ni = n. Consider the following optimization problem with an equality

constraint.

min f(x)

subject to Ax− b = 0.

Let Ai be a submatrix of A associated xi. That is, Ax = A1x1 + · · ·+Akxk. Then the

Lagrangian is written by

L(x, ν) = L1(x1, ν) + · · ·+ Lk(xk, ν) + ν>b

where Li(xi, ν) = fi(xi) + ν>Aixi.
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Then, we can apply x-update to each dual ascent method by xi.

x
(k+1)
i := argminxi

Li(xi, ν
(k))

ν(k+1) := ν(k) + ρ(

n∑
i=1

Aix
(k+1)
i − b)
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Method of Multipliers

We consider the convex optimization problem

minimize f(x)

subject to Ax = b

x ∈ Rp, A ∈ Rm×n and f is convex funciton.

Then, the Lagrangian is

L(x, ν) = f(x) + ν>(Ax− b).
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An augmented Lagrangian is what gives a 2-norm penalty for equality constraint in the Lagrangian

and is defined by

Lρ(x, ν) = f(x) + ν>(Ax− b) +
ρ

2
‖ Ax− b ‖22

where ρ > 0.

Applying the dual ascent method to the modified problem is known as the method of multipliers.

x(k+1) := argminxLρ(x, ν
(k))

ν(k+1) := ν(k) + ρ(Ax(k+1) − b)
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If f is differentiable, then the optimality conditions are defined by :

Primal feasibility : Ax∗ − b = 0

Dual feasibility : ∇f(x∗) +A>ν∗ = 0

where x∗, ν∗ is the optimal solution.

And by definition, xk+1 minimizes Lρ(x, ν
k) :

0 = ∇Lρ(x(k+1), ν(k))

= ∇f(x(k+1)) +A>(ν(k) + ρ(Ax(k+1) − b))
= ∇f(x(k+1)) +A>ν(k+1)

Thus, our dual update ν(k+1) makes (x(k+1), ν(k+1)) dual feasible.
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Example 2 (Dual Ascent Method: parallel processing from two data databases)

Denote the empirical risk function defined on database 1 and 2 by f1 and f2 and denote the

model parameter by x. Considering convex optimization problems

minimize
x

f1(x) + f2(x)

where x ∈ Rp and we assume f1, f2 are differentiable functions.
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(continue the example)

We can reformulate the problem by

minimize
x,z

f1(x) + f2(z)

subject to x = z.

z ∈ Rp is called an auxiliary variable.
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(continue the example)

• Let L(x, z, ν) = f1(x) + f2(z) + ν>(x− z) and set an initialized ν(k) with k = 0.

• Note that L(x, z, ν(k)) splits into two independent functions:

L(x, z, ν(k)) = f1(x) + ν(k)>x+ f2(z)− ν(k)>z

• Solve the two independent optimization problems on each database.

x(k+1) = argmin
x

f1(x) + ν(k)>x

z(k+1) = argmin
z

f2(z)− ν(k)>z

• Update the dual parameter by

ν(k+1) = ν(k) + ρ(x(k+1) − z(k+1))
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Generlization

The general formula, including equality constraint, is

minimize f1(x) + f2(z) (2)

subject to Ax+Bz = c.

The Lagrangian is defined by

L(x, z, ν) = f1(x) + f2(z) + ν> (Ax+Bz − c) . (3)
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Since the objective function is separable for x and z, we can apply the maximization with respect

to x and z independently in the dual ascent method.

x(k+1) := argminx f1(x) + (A>v(k))>x

z(k+1) := argminz f2(z) + (B>v(k))>z

ν(k+1) := ν(k) + ρ
(
Ax(k+1) +Bz(k+1) − c

)
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Alternating Direction Method of Multipliers [Boyd et al., 2011]

min f(x) + g(z) + ρ‖Ax+Bz − c‖2 (4)

subject to Ax+Bz = c,

where ρ > 0 The problem (4) is the same solution as (2). Because Ax+Bz − c = 0 whenever

(x, z) is feasible.
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Update rule

Lρ(x, z, ν) = f(x) + g(z) + ν>(Ax+Bz − c) + ρ‖Ax+Bz − c‖2

• For given ν(k) and z(k), minimize Lρ(x, z
(k), ν(k)) w.r.t x.

• For given ν(k) and x(k+1), minimize Lρ(x
(k+1), z, ν(k)) w.r.t z.

• For given x(k+1) and z(k+1), update ν(k+1) = ρ(Ax(k+1) +Bz(k+1) − c).

University of Seoul Alternating Direction Method of Multipliers I 18 / 63



Investigation of updating rule

• Denote the Lagrangian of (4) by

L(x, z, ν) = f(x) + g(z) + ν>(Ax+Bz − c)

• In the view of minimizing (3) L(x, z, ν) w.r.t (x, z), Lρ(x, z, ν) is a majorized function of

L(x, z, ν) at a point on {(x, z) : Ax+Bz − c = 0}.
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Assume f and g are differentiable, then we have two feasibility conditions:

primal feasibility : Ax∗ +Bz∗ − c = 0

dual feasibility : ∇f(x∗) +A>ν∗ = 0

∇g(z∗) +B>ν∗ = 0

where x∗, z∗, ν∗ is the optimal solution.

• primal feasibility: the solution should satisfy the constraint.

• dual feasibility: By the definition of the dual function, the dual variable v∗ is feasible if

(x∗, z∗) is the minimizer of f(x) + g(z) + ν(Ax+Bz − c), that is

∇f(x∗) +A>ν∗ = 0 and ∇f(z∗) +B>ν∗ = 0
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Investigation of updating rule: Dual feasibility condition

• Suppose that the dual variable is updated by

ν(k+1) = ν(k) + ρ(Ax(k+1) +Bz(k+1) − c).

• If z(k+1) minimizes Lρ(x
(k+1), z, ν(k)).

0 = ∇g(z(k+1)) +B>ν(k) + ρB>(Ax(k+1) +Bz(k+1) − c)
= ∇g(z(k+1)) +B>(ν(k) + ρ(Ax(k+1) +Bz(k+1) − c)
= ∇g(z(k+1)) +B>ν(k+1)

Therefore z-update always holds dual feasibility for z. However, the dual feasibility of x is

not guaranteed.
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Because x(k+1) minimizes Lρ(x, z
(k), ν(k)),

0 = ∇f(x(k+1)) +A>ν(k) + ρ(Ax(k+1) +Bz(k) − c)
= ∇f(x(k+1)) +A>(ν(k) + ρ(Ax(k+1) +Bz(k) − c))
= ∇f(x(k+1)) +A>(ν(k) + ρ(Ax(k+1) +Bz(k+1) − c) + ρ(Bz(k) −Bz(k+1)))

= ∇f(x(k+1)) +A>ν(k+1) + ρA>B(z(k) − z(k+1)).

Thus, the dual feasibility is written by

f(x(k+1)) +A>ν(k+1) = ρA>B(z(k+1) − z(k)) = 0.
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Stopping criterion

We can define the primal and dual residuals in ADMM at step k + 1

Primal residuals : r(k+1) = Ax(k+1) +Bz(k+1) − c
Dual residuals : s(k+1) = ρA>B(z(k+1) − z(k))

Therefore stopping criterion satisfies that ‖r‖2 and ‖s‖2 are smaller than any ε.

• Primal residuals are defined by primal feasibility.

• Dual residual defined by the first dual optimality conditions.
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Alternating Direction Method of Multipliers

• Given x, z, and ν, ρ to some initial value.

• Repeat:

• x := argminxLρ(x, z, ν)

• z := argminzLρ(x, z, ν)

• ν := ν + ρ(Ax+Bz − c)
• Stopping criterion : quit ‖r‖ < ε and ‖s‖ < ε.
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Scaled form of ADMM

Define the residual r = Ax+Bz − c; then we have transformed an augmented Lagrangian by

Lρ(x, z, ν) = f(x) + g(z) + ν>r +
ρ

2
‖r‖2

= f(x) + g(z) +
ρ

2
‖r +

1

ρ
ν‖2 − ρ

2
‖ν‖2

= f(x) + g(z) +
ρ

2
‖r + u‖2 + constant,

where u = 1
ρν.
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The scaled ADMM provides a simpler form of the update formula: let u(k) = ν(k)/ρ.

x(k+1) := argminx

(
f(x) +

ρ

2
‖ Ax+Bz(k) − c+ u(k) ‖22

)
z(k+1) := argminz

(
g(z) +

ρ

2
‖Ax(k+1) +Bz − c+ u(k)‖2

)
u(k+1) := u(k) +

(
Ax(k+1) +Bz(k+1) − c

)
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Scaled dual ADMM

• Given x, z, and u, ρ to some initial value.

• Repeat:

• x := argminx
(
f(x) + ρ

2
‖Ax+Bz − c+ u‖2

)
• z := argminz

(
g(z) + ρ

2
‖Ax+Bz − c+ u‖2

)
• u := u+ (Ax+Bz − c)
• Stopping criterion : quit ‖r‖ < ε and ‖s‖ < ε

University of Seoul Alternating Direction Method of Multipliers I 27 / 63



Using the scaled dual variable, we express the x-update step as

x+ = argmin
x

(
f(x) +

ρ

2
‖Ax+Bz − c+ u‖22

)
= argmin

x

(
f(x) +

ρ

2
‖Ax− v‖22

)
,

where v = −Bz + c− u is a known constant vector for the purposes of the x-update. If A = I

then

x+ = argmin
x

(
f(x) +

ρ

2
‖x− v‖22

)
Update the z in the same way as x-update.
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Definition 3 (Proximal Operator)

For a convex function f

proxf (v) = argminxf(x) +
1

2
‖x− v‖2
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Example 4 (Projection)

If f is the indicator function of a closed nonempty convex set C, then the x-update is

x+ = argmin
x

(
f(x) +

ρ

2
‖x− v‖22

)
= ΠC(v),

where

f(x) =

{
0 if x ∈ C
∞ otherwise

and ΠC denotes projection onto C.
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Example 5 (Soft Thresholding)

For an example that will come up often in the sequel, consider f(x) = λ‖x‖1 (with λ > 0) and

A = I. In this case, the (scalar) x-update is

x+ = argmin
x

λ|x|+ 1

2
(x− v)2

=


v − λ , if u > λ

0 , if − λ ≤ v ≤ λ
v + λ , if u < −λ.
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Definition 6 (Soft Thresholding operator)

Sλ : R 7→ R is defined by

Sλ(v) =


v − λ , if u > λ

0 , if − λ ≤ v ≤ λ
v + λ , if u < −λ.
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Example 7 (Lasso)

The lasso regression estimator is obtained by solving the problem

min
x∈Rp

‖Ax− b‖2 + λ‖x‖1

An equivalent problem is given by

min
x,z

‖Ax− b‖2 + λ‖z‖1

subject to Ix− Iz = 0.
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The scaled form of ADMM defines

Lρ(x, z, u) = ‖Ax− b‖2 + λ‖z‖1 +
ρ

2
‖x− z + u‖2.

The following is the first iteration of the ADMM.

1. Initialize u(0) and z(0).

2. Obtain x(1) = argmin
x

‖Ax− b‖2 + ρ
2‖x− z

(0) + u(0)‖2

3. Obtain z(1) = argmin
z

λ‖z‖1 + ρ
2‖x

(1) − z + u(0)‖2

4. u(1) = u(0) + x(1) − z(1)
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Computation of the steps 2 and 3

x(1) has a closed form as

x(1) = 2(A>A+ ρI)−1(2b>Aρ(z(0) − u(0)))

z(1) has also a closed form. Let v = (v1, · · · , vn) = x(1) +u(0). Note that λ‖z‖1 + ρ
2‖z− v‖

2 =

λ
∑p
j=1 |zj |+

ρ
2

∑p
j=1(zj − vj)2 such that z(1) = (z

(1)
1 , · · · , z(1)

p ) where

z
(1)
j = argmin

z
λ|z|+ ρ

2
(z − vj)2

= argmin
z

λ

ρ
|z|+ 1

2
(z − vj)2

= Sλ/ρ(vj) (Soft thresholding operator)
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Consensus Problem
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review

What is a consensus problem?

Consider the case with a single global variable x, with the objective and constraint split into N

parts:

min
x

f(x) =

N∑
i=1

fi(x), (5)

where x ∈ Rn, and fi : Rn → R ∪ {+∞} are convex and encode constraints by assuming

fi(X) = +∞ when a constraint is violated.
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Figure 1: Parallel process in x-udpate

If one processor has high computing complexity, it leads to a bottleneck state.
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What is a sharing problem?

The sharing problem involves each agent adjusting its variable to minimize its individual cost fi,

as well as the shared objective g.

min
xi

N∑
i=1

fi(xi) + g(

N∑
i=1

xi), (6)

where xi ∈ Rn, fi is a local cost function in subsystem i and g is the shared objective.

The sharing problem is important because many useful problems can be put into this form.
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When can we use distributed fitting?

• This is useful either when there are so many training examples that it is inconvenient or

impossible to process them on a single machine or when the data is naturally collected or

stored in a distributed fashion.

ex) online social network data, web server access logs, wireless sensor networks

• This is useful when the data have modest examples but a large of features.

ex) NLP, bioinformatics
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Suppose we have this problem

minimize l(Ax− b) + r(x) (7)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm, l : Rm → R, r : Rn → R
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Definition 8 (Data parallelization)

Suppose that l(u1, · · · , um) = l1(u1) + · · ·+ lm(um). The problem is written by

l(Ax− b) =

m∑
i=1

li(a
>
i x− bi),

where a>i is the ith row vector of A. If r(·) is separable, it is a consensus and sharing problem.
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(7) is a consensus form

minimize
N∑
i=1

li(a
>
i xi − bi) + r(z) (8)

subject to xi − z = 0. (9)

Then, the scaled Lagrangian of the above problem (8) is obtained by

Lρ(x1, . . . , xN , z, y)

N∑
i=1

(li(a
>
i xi − bi) + r(z) + (ρ/2)‖xi − z + ui‖22 + ‖ui‖22)
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The resulting ADMM algorithm is the following:

x
(k+1)
i := arg min

xi

(li(Aixi − bi) + (ρ/2)‖xi − zki + uki ‖22)

z(k+1) := arg min
z

(r(z) + (ρ/2)

N∑
i=1

‖xi − z + ui‖22)

= arg min
z

(r(z) + (Nρ/2)‖z − x̄(k+1) − ūk‖22)

u
(k+1)
i := uki + xk+1

i − zk+1
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Example 9 (Parallel computing of Lasso: Data Parallelism)

min
1

2
‖Ax− b‖22 + λ‖z‖1

subject to x− z = 0, λ ≥ 0

Let Ai ∈ Rni×p for i = 1, · · · , k and
∑N
i=1 ni = n and A = [A>1 , · · · , A>N ]>. Similarly let

bi ∈ Rni and b = (b>1 , · · · , b>N )>. Then, an equivalent problem is given by

min
1

2

N∑
i=1

‖Aixi − bi‖22 + λ‖z‖1

subject to xi − z = 0 for i = 1, · · · , N.
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Let x = (x>1 , · · · , x>N )>, and u = (u>1 , · · · , u>N )> and B = (I, · · · , I)> ∈ RNp×p, then we can

obtain the Scaled Augment Lagrangian form

Lρ(x, z, u) =
1

2
‖Ax− b‖2 + λ‖z‖1 +

ρ

2
‖Ix−Bz + u‖2

=
1

2

N∑
i=1

‖Aixi − bi‖2 + λ‖z‖1 +
ρ

2

N∑
i=1

‖xi − z + ui‖2

Note that for fixed z and ui Lρ(x, z, u) is separable with respect to x1, · · · , xk. Thus,

xk+1
i := arg min

xi

(
1

2
‖Axi − bi‖22 + (ρ/2)‖xi − zk + uki ‖22)

= (A>i Ai + ρI)−1(Aibi + ρ(zk − uki ))

are obtained in each server.
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Denote the jth element of xi and ui by xij and uij . For fixed xi and ui for i = 1, · · · , k, Lρ is

separable since

λ‖z‖1 +
ρ

2
‖x−Bz + u‖2

= λ

p∑
j=1

|zj |+
ρ

2

k∑
i=1

p∑
j=1

(xij + uij − zj)2

=

p∑
j=1

(
λ|zj |+

ρ

2

k∑
i=1

(xij + uij − zj)2

)

Let vij = xij + uij . The minimizer of Lρ(x, z, u) for fixed x and u are obtained

z+
j = argminz λ|z|+ ρ

2

k∑
i=1

(zj − vij)2
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Temporarily omit the index j in z and v.

argminz λ|z|+ ρ

2

k∑
i=1

(z − vi)2

= argminz λ|z|+ ρ

2
(kz2 − 2(

k∑
i=1

vi)z)

= argminz λ|z|+ kρ

2
(z − v̄)2,

where v̄ =
∑k
i=1 vi/k. Thus, the minimizer z is obtained by the soft thresholding operator

Sλ/(kρ)(v̄).
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The resulting ADMM algorithm is the following:

x
(k+1)
i := arg min

xi

1

2
‖Axi − bi‖22 + (ρ/2)‖xi − zk + uki ‖2

= (A>i Ai + ρI)−1(Aibi + ρ(zk − uki ))

zk+1 := (z
(k+1)
1 , · · · , z(k+1)

p ),

where z
(k+1)
j = Sλ/(kρ)(x̄

(k+1)
j + ū

(k)
j )

uk+1
i := uki + xk+1

i − zk+1

Note that (A>i Ai + ρI)−1 and bi for each i do not depend on the updated solutions. Thus, it

would be beneficial to restore these quantities in each memory.
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Figure 2: Flow of Computation
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matrix Inversion lemma

when we proceed in updating xi, we have to find (A>i Ai + ρI)−1 value then, we can use matrix

Inversion lemma,

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

if A and C is identity matrix, then,

(I + UV )−1 = I − U(I + V U)−1V
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Definition 10 (Feature Parallelization)

Suppose we have this problem

min l(

N∑
i=1

Aixi − b) +

N∑
i=1

ri(xi)

Following the approach used for the sharing problem, we express the problem as

min l(

N∑
i=1

zi − b) +

N∑
i=1

ri(xi)

subject to Aixi − zi = 0, i = 1, 2 . . . N.
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The resulting ADMM algorithm is the following:

xk+1
i := arg min

xi

(ri(xi)) + (ρ/2)‖Aixi − zki + uki ‖22)

zk+1
i := arg min

z
(l(

N∑
i=1

zi − b) +

N∑
i=1

(ρ/2)‖Aixk+1
i − zki + uki ‖22)

uk+1
i := uki +Aix

k+1
i − zk+1

i
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Updating zi is simplified by two steps. Note that

N∑
i=1

‖zi − ci‖2 =

N∑
i=1

‖zi − ci − z̄ + c̄+ z̄ − c̄‖2

=

N∑
i=1

‖zi − ci − z̄ + c̄‖2 +
N∑
i=1

‖z̄ − c̄‖2

≥ N‖z̄ − c̄‖2,

where z̄ =
∑N
i=1 zi and c̄ =

∑N
i=1 ci/N . The second equality holds for

∑N
i=1(zi − ci − z̄ +

c̄)>(z̄ − c̄) = 0.
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Thus,

l(

N∑
i=1

zi − bi) + (ρ/2)

N∑
i=1

‖zi −Aixi − ui‖2

≥ l(Nz̄ − bi) + (Nρ/2)‖z̄ −Ax− ū‖, (10)

where Ax = 1
N

∑N
i=1Aixi, u = 1

N

∑
i=1 ui.

z̄(k+1) := arg min
z̄

(l(Nz̄ − b) +
Nρ

2
‖z̄ −Ax(k+1) − ūk‖22)

z
(k+1)
i := z(k+1) +Aix

k+1
i + uki −Ax

(k+1) − ūk.
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We investigate the updating rule

u
(k+1)
i = u

(k)
i +Aix

(k+1)
i − z(k+1)

i

(See the unconstrained optimization slide 1 for Jacobian of composite function)

Let z = (z>1 , · · · , z>N )> ∈ RnN and In be n×n identity matrix and C = [In, · · · , In] ∈ Rn×(nN).

Denote h : z ∈ RnN 7→ Cz ∈ Rm then we can write

l(

N∑
i=1

zi) = l(Cz) = (l ◦ h)(z)

Since the Jacobian of h and l ◦ h are A and Jl(h(x))Jh(x),

∂l(h(z))

∂z
= C>∇l(Cz)
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C>∇l(Cz) =

In...
In

∇l(Cz) =

∇l(Cz)...

∇l(Cz)


Thus, updating z(k+1) in the ADMM implies that

∂Lρ(z
(k+1))

∂zi
= ∇l(Cz(k+1)) + ρ(z

(k+1)
i −Aix(k+1)

i + u
(k)
i ) = 0

for i = 1, · · · , N .
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In addition, the dual feasibility of the Lagrangian is defined by

∂L(z(k+1))

∂zi
= ∇l(Cz(k+1)) + ν

(k+1)
i = l(Cz(k+1)) + ρu

(k+1)
i = 0

Thus,

ρu
(k+1)
i = ρ(z

(k+1)
i −Aix(k+1)

i + u
(k)
i )

implies the dual feasibility of the Lagrangian. That is, the updating

u
(k+1)
i = u

(k)
i + z

(k+1)
i −Aix(k+1)

i

is given by the admm. Note that equally

u
(k+1)
i = Āx

(k+1)
+ ū(k) − z̄(k+1).
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Hence, we can get The resulting ADMM algorithm

xk+1
i := arg min

xi

(ri(xi)) + (ρ/2)‖Aixi −Aixki − z̄k + Āx
k

+ uk‖22)

z̄k+1 := arg min
z

(l(Nz̄ − b) +

N∑
i=1

(ρ/2)‖z̄ − Āxk+1 − uk‖22)

uk+1 := uk + Āx
k+1 − z̄k+1
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Example 11 (Lasso)

If we separate the lasso problem based on variables,

min
1

2
‖
N∑
i=1

Aixi − b‖22 + λ

N∑
i=1

‖xi‖1

Then, we can change Aixi = zi for applying to ADMM,

min
1

2
‖
N∑
i=1

zi − b‖22 + λ

N∑
i=1

‖xi‖1

subject to Aixi − zi = 0 for all i
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We can obtain the Scaled Augment Lagrangian form,

L(xi, zi, ui) =
1

2
‖
N∑
i=1

zi − b‖22 + λ

N∑
i=1

‖xi‖1 +
ρ

2
‖Aixi − zi + ui‖22 +

ρ

2
‖u‖22

The resulting ADMM algorithm is the following:

xk+1
i := arg min

xi

(
ρ

2
‖Aixi −Aixki − z̄k + Āx

k
+ uk‖22 + λ‖xi‖1)

z̄k+1 :=
1

N + ρ
(b+ ρĀx

k+1
+ ρuk)

uk+1 := uk + Āx
k+1 − z̄k+1
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In the xi updates, we have xk+1
i = 0 if and only if,

‖A>i (Aix
k
i + z̄k − Āxk − uk)‖2 ≤ λ/ρ

when this occurs, the xi updates is fast.
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