Alternating Direction Method of Multipliers II

Department of Statistics
November 23, 2023
University of Seoul

Introduction

ADMM for non-convex problems

- Focusing on cases in which the individual steps (x-update, z-update) can be carried out exactly.
- Even in this case, ADMM need not converge (when it does converge, it need not converge to an optimal point).
- ADMM converges to different points, depending on the initial values x^{0}, z^{0}, y^{0} and the parameter ρ.

Definition 1 (Bi-convex problem)

$$
\begin{align*}
\min & F(x, z) \tag{1}\\
\text { subject to } & G(x, z)=0
\end{align*}
$$

where

- $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is bi-convex
(convex in x for each fixed z and convex in z for each fixed x).
- $G: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is bi-affine
(affine in x for each fixed z and affine in z for each fixed x).

Scaled ADMM form

$$
\begin{aligned}
x^{(k+1)} & :=\arg \min _{x}\left(F\left(x, z^{(k)}\right)+(\rho / 2)\left\|G\left(x, z^{(k)}\right)+u^{(k)}\right\|_{2}^{2}\right) \\
z^{(k+1)} & :=\arg \min _{z}\left(F\left(x^{(k+1)}, z\right)+(\rho / 2)\left\|G\left(x^{(k+1)}, z\right)+u^{(k)}\right\|_{2}^{2}\right) \\
u^{(k+1)} & :=u^{(k)}+G\left(x^{(k+1)}, z^{(k+1)}\right)
\end{aligned}
$$

- Both the x-updates and z-updates involve convex optimization problems and are tractable.

Definition 2 (Nonnegative Matrix Factorization)

$$
\begin{align*}
\text { min } & (1 / 2)\|X-W V\|_{F}^{2} \tag{2}\\
\text { subject to } & W_{i j} \geq 0, \quad V_{i j} \geq 0
\end{align*}
$$

where the variables $W \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{r \times p}$ and data $X \in \mathbb{R}^{n \times p}$. The objective is bi-convex, and the problem is bi-convex.

What is NMF?

- The analysis method of high-dimensional data as it automatically extracts sparse and interpretable features.

$$
\begin{aligned}
\min & f\left(x_{1}, x_{2}\right) \\
\text { subjec to } & x_{2} \geq 0
\end{aligned}
$$

- The method of matrix factorization with element-wise nonnegative constraints.

Figure 1: Sparsity obtained from a positivity constraint

Example 3 (Source Appointment Method)

There are n observatories measuring air pollutants. The air pollutants comprise p chemical species, and there are r sources of pollutant emissions."

- $x_{i}^{\top}=\left(x_{i 1}, \cdots, x_{i p}\right)$ for $i=1, \cdots, n$ where $x_{i k}$ is the amount of the k th measured chemical at the i th observatory.
- $v_{k}^{\top}=\left(v_{k 1}, \cdots, v_{k p}\right)$ is the (positive valued) chemical profile of the source k.
- $w_{i}^{\top}=\left(w_{i 1}, \cdots, w_{i r}\right)$ for $i=1, \cdots, n$ is the (positive valued) source contribution vector of the i th observatory. $w_{i k}$ denotes the contribution of the source k to the air pollution of the i th observatory.

We assume that

$$
x_{i j}=\sum_{k=1}^{r} w_{i k} v_{k j}+\epsilon_{i j}
$$

where $\epsilon_{i j}$ is an error-variable.
It is written by

$$
X=W V+E
$$

Figure 2: Source appointment methods

Example 4 (Representation learning for image data)

- $x_{i}^{\top}=\left(x_{i 1}, \cdots, x_{i p}\right)$ is the i th image consisting of p pixels and $X \in \mathbb{R}_{+}^{n \times p}$ is the dataset of n images.
- $v_{k}^{\top}=\left(v_{k 1}, \cdots, v_{k p}\right)$ is the feature vector representing the k th specific pattern and $V \in \mathbb{R}_{+}^{r \times p}$ is a feature matrix. V is called a filter bank consisting of r filters.
- $w_{i}^{\top}=\left(w_{i 1}, \cdots, w_{i r}\right)$ is the encoding vector of the i th image and $W \in \mathbb{R}^{n \times r}$ is a encoding matrix.
- NMF learns how to combine parts to form a whole (a parts-based sparse representation).

Figure 3: NMF learns a parts-based representation of faces

Example 5 (Application in NLP)

- $X \in \mathbb{R}_{+}^{n \times p}$ is a document matrix whose each row vector denotes the document represented by p-word frequency.
- $V \in \mathbb{R}_{+}^{r \times p}$ is a topic matrix whose each row vector denotes the topic (semantic feature) represented by p-word frequency.
- $W \in \mathbb{R}_{+} n \times r$ is considered as 'topics' proportion matrix.

Solving NMF by Scaled ADMM

$$
\begin{aligned}
\min _{B, W, V} & (1 / 2)\|X-B\|_{F}^{2}+I_{+}(V)+I_{+}(W) \\
\text { subject to } & B-W V=0
\end{aligned}
$$

We introduced a new variable X and the indicator function I_{+}for element-wise nonnegative matrices.

$$
I_{+}(V)= \begin{cases}0 & \text { all elements of } V \text { is non-negative } \\ \infty & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\left(B^{k+1}, V^{k+1}\right) & :=\arg \min _{B, V \geq 0}\left(\|X-B\|_{F}^{2}+(\rho / 2)\left\|B-W^{k} V+U^{k}\right\|_{F}^{2}\right) \\
W^{k+1} & :=\arg \min _{W \geq 0}\left\|B^{k+1}-W V^{k+1}+U^{k}\right\|_{F}^{2} \\
U^{k+1} & :=U^{k}+B^{k+1}-W^{k+1} V^{k+1}
\end{aligned}
$$

Note that we use the Frobenius norm instead of the L_{2}-norm.

- We know that $\|B\|_{F}^{2}=\sum_{i=1}^{p}\left\|b_{i}\right\|_{2}^{2}$ where $X=\left[b_{1}, \cdots, b_{p}\right]$.
- Using this, we can split the first update step across the rows of B and V, and it can be performed by solving a set of quadratic programs in parallel.

$$
\begin{aligned}
& \quad\left(b_{i}^{k+1}, v_{i}^{k+1}\right)=\operatorname{argmin}_{b_{i}, v_{i} \geq 0}\left(\left\|x_{i}-b_{i}\right\|_{2}^{2}+(\rho / 2)\left\|b_{i}-W^{k \top} v_{i}+u_{i}^{k}\right\|_{2}^{2}\right) \\
& \text { for } i=1, \cdots, p
\end{aligned}
$$

- In the same way, we can split the second update into the columns of W (quadratic programs):

$$
w_{j}^{k+1}:=\operatorname{argmin}_{w_{j} \geq 0}\left\|b_{j}^{k+1}-w_{j} V^{k+1}+u_{j}^{k}\right\|_{2}^{2}
$$

for $j=1, \cdots, r$.

Supplementary Note

1. Standard ADMM
2. Augmented ADMM
3. Example(Sparse Fused Lasso)

When we use ADMM algorithm?

We aim to solve the optimization problem of the following form

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}^{p}} f(\theta)+g(A \theta), \tag{3}
\end{equation*}
$$

where f and g are convex functions and $A \in \mathbb{R}^{m \times p}$.
ADMM algorithm can solve convex problems with constraints such as (3) stably but slowly.

Using auxiliary variable γ, ADMM form of problem (3)

$$
\begin{array}{ll}
\min _{\theta \in \mathbb{R}^{p}, \gamma \in \mathbb{R}^{m}} & f(\theta)+g(\gamma), \tag{4}\\
\text { subject to } & A \theta-\gamma=0
\end{array}
$$

Updating rules of problem (4)

$$
\begin{aligned}
\theta^{k+1} & :=\underset{\theta}{\operatorname{argmin}}\left(f(\theta)+\frac{\rho}{2}\left\|A \theta-\gamma^{k}+\rho^{-1} \alpha^{k}\right\|_{2}^{2}\right), \\
\gamma^{k+1} & :=\underset{\gamma}{\operatorname{argmin}}\left(g(\gamma)+\frac{\rho}{2}\left\|A \theta^{k+1}-\gamma^{k}+\rho^{-1} \alpha^{k}\right\|_{2}^{2}\right), \\
\alpha^{k+1} & :=\alpha^{k}+\rho\left(A \theta^{k+1}-\gamma^{k+1}\right),
\end{aligned}
$$

where α is a dual variable.

In chapter general patterns of ADMM, we investigated the quadratic objective function f

$$
f(x)=(1 / 2) x^{\top} P x+q^{\top} x+r,
$$

and the efficient methods of computing inverse matrix in x-update.
For instance, f is quadratic term of θ and P and A are diagonal matrix, computing cost of $\left(P+\rho A^{\top} A\right)^{-1}$ is $O(p)$ by comparison with $O\left(p^{3}\right)$ which is general cost of inverse matrix in x-update.

In general case (4), matrix A has a lot of influence on convergence time.

Issue

- Many well-known problems like generalized lasso can be written in the same form of (4).
- Unless A is not sparse, computing cost is too expensive in θ-update of a high-dimensional problem $(p \gg n)$.

How can we get around this difficulty?

Augmented ADMM

We consider "augmented" variable ($\gamma, \tilde{\gamma}$) and rewrite problem (4)

$$
\begin{array}{rl}
\min _{\theta, \gamma \in \mathbb{R}^{m}, \tilde{\gamma} \in \mathbb{R}^{p}} & f(\theta)+g(\gamma) \tag{6}\\
\text { subject to } & \binom{A}{\left(D-A^{\top} A\right)^{1 / 2}} \theta-\binom{\gamma}{\tilde{\gamma}}=0,
\end{array}
$$

where $D \in \mathbb{R}^{p \times p}$ satisfies $D \succeq A^{\top} A$.
Note that the augmented variable $\tilde{\gamma}$ and associated constraintally redundant.

Apply standard ADMM to (6), updating rules are

$$
\begin{align*}
\theta^{k+1}:= & \underset{\theta}{\operatorname{argmin}} f(\theta)+\frac{\rho}{2}\left\|A \theta-\gamma^{k}+\rho^{-1} \alpha^{k}\right\|_{2}^{2} \tag{7}\\
& +\left\|\left(D-A^{\top} A\right)^{1 / 2} \theta-\tilde{\gamma}^{k}+\rho^{-1} \tilde{\alpha}^{k}\right\|_{2}^{2}, \\
\gamma^{k+1}:= & \underset{\gamma}{\operatorname{argmin}}\left(g(\gamma)+\frac{\rho}{2}\left\|A \theta^{k+1}-\gamma+\rho^{-1} \tilde{\alpha}^{k}\right\|_{2}^{2}\right), \tag{8}\\
\tilde{\gamma}^{k+1}:= & \left(D-A^{\top} A\right)^{1 / 2} \theta^{k+1}+\rho^{-1} \tilde{\alpha}^{k} \tag{9}\\
\alpha^{k+1}:= & \alpha^{k}+\rho\left(A \theta^{k+1}-\gamma^{k+1}\right) \tag{10}\\
\tilde{\alpha}^{k+1}:= & \tilde{\alpha}^{k}+\rho\left(\left(D-A^{\top} A\right)^{1 / 2} \theta^{k+1}-\tilde{\gamma}^{k+1}\right), \tag{11}
\end{align*}
$$

where $\alpha \in \mathbb{R}^{m}, \tilde{\alpha} \in \mathbb{R}^{p}$ are dual variables.

Combining (9) and (11) gives $\tilde{\alpha}^{k+1}=0$. Then plugging (9) into (7), θ-update will be rewritten as

$$
\begin{aligned}
\theta^{k+1}=\quad & \underset{\theta}{\operatorname{argmin}} f(\theta)+\frac{\rho}{2}\left\|A \theta-\gamma^{k}+\rho^{-1} \alpha^{k}\right\|_{2}^{2} \\
& +\left\|\left(D-A^{\top} A\right)^{1 / 2}\left(\theta-\theta^{k}\right)\right\|_{2}^{2} .
\end{aligned}
$$

This result cancels out $\theta^{\top} A^{\top} A \theta$ in θ-update.

$$
\begin{aligned}
\theta^{k+1} & :=\underset{\theta}{\operatorname{argmin}}\left(f(\theta)+\left(2 \alpha^{k}-\alpha^{k-1}\right)^{\top} A \theta+\frac{\rho}{2}\left(\theta-\theta^{k}\right)^{\top} D\left(\theta-\theta^{k}\right)\right) \\
\gamma^{k+1} & :=\underset{\gamma}{\operatorname{argmin}}\left(g(\gamma)+\frac{\rho}{2}\left\|A \theta^{k+1}-\gamma+\rho^{-1} \alpha^{k}\right\|_{2}^{2}\right) \\
\alpha^{k+1} & :=\alpha^{k}+\rho\left(A \theta^{k+1}-\gamma^{k+1}\right)
\end{aligned}
$$

Note that

- In θ-update, we compute inverse matrix of D instead of $A^{\top} A$
- Updating rules don't involve the augmented $\tilde{\gamma}$ and $\tilde{\alpha}$ at all!

Theorem 1

Under Standard ADMM assumption, for any matrix $D \in \mathbb{R}^{p \times p}$ satisfying $D \succeq A^{\top} A$ and any positive scalar $\rho>0$, the following update

$$
\begin{aligned}
\theta^{k+1}:= & \underset{\theta}{\operatorname{argmin}} f(\theta)+\left(2 \alpha^{k}-\alpha^{k-1}\right)^{\top} A \theta \\
& +\frac{\rho}{2}\left(\theta-\theta^{k}\right)^{\top} D\left(\theta-\theta^{k}\right) \\
\alpha^{k+1}:= & \alpha^{k}+\rho\left(A \theta^{k+1}-\gamma^{k+1}\right)
\end{aligned}
$$

converges in the sense that primal objective functions along the sequence of primal variables and dual variable converge to the optimal value: $f(\theta)+g\left(A \theta^{k}\right) \rightarrow \inf _{\theta} f(\theta)+g(A \theta)$ and $\alpha \rightarrow \alpha^{\star}$.

Which D should we choose?

D satisfies $D \succeq A^{\top} A$. For a simple choice would be $D=\delta I$ with $\delta \geq\|A\|_{o p}^{2}$ where $\|A\|_{o p}^{2}$ denotes the operator norm of A.

Operator norm

Given two normed vector spaces V and W, linear map $A: V \rightarrow W$ and operator norm is

$$
\begin{aligned}
\|A\|_{o p} & :=\inf \{c \geq 0 \mid\|A v\| \leq c\|v\| \text { for all } v \in V\} \\
& :=\sup \left\{\frac{\|A v\|}{\|v\|}: v \in V \text { and } v \neq 0\right\}
\end{aligned}
$$

Well-known lemma

$$
\left(\sigma_{\max } I-A^{\top} A\right) \text { is a positive semi-definite matrix, }
$$

where $\sigma_{\max }$ is maximum singular value of $A^{\top} A$.
Therefore we can choose $\sigma_{\max }$ for δ.

Example 6 (Sparse fused lasso over a graph)

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a graph, where \mathcal{V} is the node set and \mathcal{E} is the edge set. Often, the node set \mathcal{V} represents the features in the model, and the edge set \mathcal{E} represents their relationship.

Figure 4: Genetic Graph

Based on such a graph, we consider the following optimization problem

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \underbrace{(1 / 2)\|y-X \beta\|_{2}^{2}}_{=f(\beta)}+\underbrace{\lambda_{1}\|\beta\|_{1}+\lambda_{2} \sum_{(i, j) \in \mathcal{E}}\left|\beta_{i}-\beta_{j}\right|}_{=g(\beta)}, \tag{12}
\end{equation*}
$$

where $y \in \mathbb{R}^{n}$ is the response vector, $X \in \mathbb{R}^{n \times p}$ is a data matrix.
This regularization term g desires the structure where β_{i} and β_{j} have a similar or same value in $(i, j) \in \mathcal{E}$ and makes β sparse.

Write (12) in the form of ADMM with $A=\left[\begin{array}{c}I \\ C\end{array}\right]$ and $g(\gamma)=\lambda_{1}\left|\gamma_{1}\right|+\lambda_{2}\left|\gamma_{2}\right|$, where C is matrix associated with graph \mathcal{G} and $\gamma=\left[\begin{array}{l}\gamma_{1} \\ \gamma_{2}\end{array}\right]$.
The constraints are $\beta=\gamma_{1}$ and $C \beta=\gamma_{2}$.
For example, assume that $p=3$ and there is a connection between the first and second features. Then

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right], \gamma_{1}=\beta \text { and } \gamma_{2}=\beta_{1}-\beta_{2}
$$

The augmented ADMM gives the following updates

$$
\begin{aligned}
\beta^{k+1} & :=\left(\rho D+X^{\top} X\right)^{-1}\left(\rho D \beta^{k}+X^{\top} y-A^{\top}\left(2 \alpha^{k}-\alpha^{k-1}\right)\right) \\
\alpha^{k+1} & :=\alpha^{k}+\rho\left(A \beta^{k+1}-\gamma^{k+1}\right)
\end{aligned}
$$

where $\alpha=\left(\alpha_{1}^{\top} \alpha_{2}^{\top}\right)^{\top} \in \mathbb{R}^{p+m}$ is dual variable.

	$p \leq n$	$p>n$
stanADMM	$O\left(N_{\text {chol }} p^{2} n+N_{\text {adm }} p^{2}\right)$	$O\left(N_{\text {chol }} p^{3}+N_{\text {admm }} p^{2}\right)$
augADMM	$O\left(N_{\text {chol }} p^{2} n+N_{\text {admm }} p^{2}\right)$	$O\left(N_{\text {chol }} n^{2} p+N_{\text {admm }}[p n \vee m]\right)$

Table 1: Computational complexity

When $p>n$, the augmented ADMM gains computation efficiency, which is linear in p (if $m<$ $n p$).

Summary

- The matrix A has a lot of influence on convergence time in ADMM algorithm.
- By using augmented ADMM, we can gain huge computational efficiency.

