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Applications of constrained optimization
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Example 1 (Linear regression with constraints of positive coefficients)

An average response of a variable y is determined by x1 and x2. Denote the ith observation of

y and (x1, x2) by yi and (xi1, xi2). When the positive constraint of a regression coefficient is

required, a linearly contained optimization can be applied.

• (Model) y = β0 + β1x1 + β2x2 + ε, where β2 ≥ 0

• (Optimization problem)

min
1

2n

n∑
i=1

(yi − β0 − β1xi1 − β2xi2)2

subject to β2 ≥ 0
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(Continue with the example)

Let Y = (y1, · · · , yn)> and X̃ be the n × 2 data table and 1 ∈ Rn be the one-column vector.

Let X = (1, X̃) ∈ Rn×3, β = (β0, β1, β2), and G = (0, 0,−1). Then, the objective function is

written by

1

2n
‖Y −Xβ‖2 =

1

2n
(Y −Xβ)>(Y −Xβ)

=
1

2
β>
(
X>X

n

)
β −

(
X>Y

n

)>
β +

1

2n
Y >Y,

and the constraint is written by Gβ ≤ 0.
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(Continue with the example)

Thus, in the QP

• P = X>X/n

• q = −X>Y/n and r = Y >Y/n

• G = (0, 0,−1) ∈ R1×3 and h = 0 ∈ R

• A = 0 and b = 0
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Example 2 (Logistic linear regression with constraints of positive coefficients)

Modify the example 1 by letting y ∈ {0, 1}. The optimization problem for obtaining the MLE is

given by

min
1

n

n∑
i=1

(−yi(β0 + β1xi1 + β2xi2) + log(1 + exp(β0 + β1xi1 + β2xi2)))

subject to β2 ≥ 0.

Write L(β) = 1
n

∑n
i=1(−yix>i β + log(1 + exp(x>i β)), where xi = (1, xi1, xi2)

> ∈ R3 and

β = (β0, β1, β2)
> ∈ R3.

Department of Statistics, University of Seoul Constrained Problem and Algorithm 6 / 31



(Continue with the example)

The quadratic approximation of L(β) at β(t) is given by

f(β;β(t)) = L(β(t)) +∇L(β(t))>(β − β(t)) +
1

2
(β − β(t))>∇2L(β(t))(β − β(t))

=
1

2
β>∇2L(β(t))β +

(
∇L(β(t))−∇2L(β(t))β(t)

)>
β

+
1

2
β(t)>∇2L(β(t))β(t) −∇L(β(t))>β(t) +

1

2
β(t)>∇2L(β(t))β(t)
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(Continue with the example)

Thus, in the QP

• P = ∇2L(β(t))

• q = ∇L(β(t))−∇2L(β(t))β(t)

• G = (0, 0,−1) and h = 0

With the P , q, G and h, we can solve min f(β;β(t)) with the constraint Gβ ≤ 0.
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(Continue with the example)

Computation of ∇L(β(t)) and ∇2L(β(t)): let p̂(xi) = 1/(1− exp(x>i β̂
(t))).

∇L(β(t)) =
1

n

n∑
i=1

(p̂(xi)− yi)xi ∈ R3

∇2L(β(t)) =
1

n

n∑
i=1

p̂(xi)(1− p̂(xi))xix>i ∈ R3×3

Thus, the P and the q in the QP are computed.
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(Continue with the example)

(algorithm)

1. Set an initial β(0) and t = 0

2. β(t+1) ← argminf(β;β(t)) with Gβ ≤ 0.

3. check the convergence of β(t+1). If β(t+1) converges, stop the algorithm. Otherwise,

t← t+ 1 and go to the step 2.
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Example 3 (Linear regression with ordered positive coefficients)

• (Model) y = β0 + β1x1 + β2x2 + ε, where 0 ≤ β1 ≤ β2
• (Optimization problem)

min
1

2n

n∑
i=1

(yi − β0 − β1xi1 − β2xi2)2

subject to −β1 ≤ 0

β1 − β2 ≤ 0

There are two constraints given by Gβ ≤ 0, where

G =

(
0 −1 0

0 1 −1

)
.
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Example 4 (Linear regression with l1-penalty)

• (Model) y = β0 + β1x1 + β2x2 + ε.

• (Optimization problem)

min
1

2n

n∑
i=1

(yi − β0 − β1xi1 − β2xi2)2 + λ(|β1|+ |β2|),

where λ ≥ 0 is a tuning parameter.

Note that the minimizer of β depends on the section of λ. It is known as the LASSO estimator.
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(Continue with the example)

Note that this example just shows an application of solving the regression problem with l1-penalty.

More efficient algorithms have been developed.

Let β+
j = max(βj , 0) and β−j = max(−βj , 0). Then, βj = β+

j − β
−
j , |βj | = β+

j + β−j and

βjxij = β+
j xij + β−j (−xij).

Let β = (β0, β
+
1 , β

−
1 , β

+
2 , β

−
2 )> and xi = (1, xi1,−xi1, xi2,−xi2)> and d = (0, 1, 1, 1, 1)>. The

objective function is written by

1

2n
‖Y −Xβ‖2 + λd>β.
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(Continue with the example)

The constraints are β+
j , β

−
j ≥ 0. Thus, Gβ ≤ 0, where

G =


0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

 .

In QP, to avoid the singular problem (det(X>X) = 0), the term of η‖β‖2 with a small η > 0

is added in the objective function.
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Example 5 (Fused lasso [Tibshirani et al., 2005])

• (Model) yi = β0 + µi + εi, where εi ∼ (0, σ2).

• (Optimization problem)

min
1

2n

n∑
i=1

(yi − µ0 − µi)2 + λ1

n∑
i=1

|µi|

+λ2

n−1∑
i=1

|µi+1 − µi|,

where λ1 ≥ 0 and λ2 ≥ 0 are the tuning parameters.

Figure 1: l1 fused lasso estimator

[RINALDO, 2009]
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(Continue with the example)

Generalized lasso [Tibshirani and Taylor, 2011] solves the problem:

min
1

2n
‖Y −Xβ‖2 + λ‖Dβ‖1,

where β ∈ Rp and D ∈ Rr×p. Let X = (1, I) ∈ Rn×(n+1) and D = [D>1 D
>
2 ]
>, where

D1 =

(
0 0>n
0n I

)
∈ R(n+1)×(n+1) and D2 =


0 1 −1 0 0 · · · 0

0 0 1 −1 0 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · −1

 ∈ R(n−1)×(n+1),

then the fused lasso estimator is computed by the generalized lasso algorithm.
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Example 6 (Linear regression with a strong heredity)

• (Model) y = β0 + β1x1 + β2x2 + β3x1x2 + ε, where x1, x2 ∈ {0, 1}. β3 is nonzero only

when β1 6= 0 and β2 6= 0. (model restriction: the interaction effect is significant only when

both main effects are significant)

• (Optimization problem)

min
1

2n

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − β3xi1xi2)2

subject to |β1|+ |β2|+ |β3| ≤ C
|β3| ≤ |β1| and |β3| ≤ |β2|.

where C ≥ 0 is a tuning parameter.
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Example 7 (Non-crossing composite quantile regression)

• (Model) Denote the cdf of y|x by F (·|x). For 0 < τ1 < · · · < τK < 1,

F−1(τk|x) = βk0 + βk1x1 + · · ·+ βkpxp, for k = 1, · · · ,K.

The F−1(τk|x) is the conditional τk-qunatile function. We simply denote the quantile

regression function x̃>βk, where x̃ = (1, x>)> ∈ Rp+1.

• (Optimization problem)

min
1

nK

K∑
k=1

n∑
i=1

ρτk(yi − x̃>i βk),

where ρτ (z) = τ max(z, 0) + (1− τ)max(−z, 0).
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(Continue with the example)

Crossing problem: Let β̂k be the τk-quantile regression coefficients. For τk < τk+1

x̃>β̂k > x̃>β̂k+1

for some x̃ in the domain of predictors. [Bondell et al., 2010] proposed a reduced version of

inequality constraints to prevent the crossing problem.
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Let δ1 = β1 and δj = βj − βj−1 for j = 2, · · · ,K. Since βk =
∑k
j=1 δj

F−1(τk|x) =

k∑
j=1

δj0 + (

k∑
j=1

δj1)x1 + · · ·+ (

k∑
j=1

δjp)xp

= x̃>

 k∑
j=1

δj
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Theorem 8 (non-crossing constraints [Bondell et al., 2010])

Assume that x̃ ∈ [0, 1]p+1. If δk0 −
∑p
j=1 max(−δkj , 0) ≥ 0 for k = 2, · · · ,K, then

x̃>

 k∑
j=1

δj

 ≤ x̃>
k+1∑
j=1

δj

 for all x̃ ∈ [0, 1]p+1 and k = 1, · · ·K − 1.

(proof) See [Bondell et al., 2010] or [Moon et al., 2021]
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(Optimization problem for estimating non-crossing quantile regression)

min
1

nK

K∑
k=1

n∑
i=1

ρτk(yi − x̃>i δk)

subject to δk0 −
p∑
j=1

max(−δkj , 0) ≥ 0 for k = 2, · · · ,K

Because the feature vectors in the neural network satisfy the bounded condition of x̃ by using the

sigmoid activation function, the non-crossing composite quantile linear regression model easily

is extended to the neural network model [Moon et al., 2021].
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Example 9 (Monotone regression)

• (Model) f : R 7→ R, nondecreasing function.

Let kj for j = 1, · · · ,m be knot point and Bj(z) = max(z − kj , 0). (The knot points are

pre-determined)

f(x) = γ0 +

m∑
j=1

γjBj(x), where
k∑
j=1

γj ≥ 0 for k = 1, · · · ,m.

• (Optimization problem)

min
1

2n

n∑
i=1

(yi − γ0 −
m∑
j=1

γjBj(xi))
2

subject to
k∑
j=1

γj ≥ 0 for k = 1, · · · ,m.
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Appendix

The lasso regression estimator is given by minimizing

lλ(β) =
1

2n

n∑
i=1

(yi − x>i β)2 + λ‖β‖1. (1)

(Here, the intercept is not considered in the model.)

lλ(β) is a convex function of β.
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Appendix

Coordinatewise algorithm Let l(β1, · · · , βp) be (strictly) convex function on Rp. If the convex

function is differentiable , the following coordinate algorithm gives a minimizer.

(1) Let k = 0 and set an initial estimator (β
(k)
1 , · · · , β(k)

p )

(2) For j = 1, · · · , p
• minimize l(β

(k+1)
1 , · · · , β(k+1)

j−1 , βj , β
(k)
j+1, · · · , β

(k)
p ) with respect to βj and let the minimizer

be β
(k+1)
j

(3) k → k + 1 and repeat (2) until the solutions converges.

When the nondifferentiable function is separable, the coordinate algorithm gives the minimizer for

(1) [Tseng, 2001]. This algorithm is known as “shooting algorithm”[Fu, 1998] and is elaborated

by [Friedman et al., 2010].
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Appendix

First, consider the minimizer of the following function.

min
x∈R

ax2 + bx+ λ|x|

for a > 0 and λ ≥ 0. Let fλ(x) = ax2 + bx+ λ|x|. Compute the minimizer of fλ(x).

argminxfλ(x) =

{
− b

2a + sign(b) λ2a , if |b| > λ

0, if |b| ≤ λ
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Appendix

First consider the case of b < 0 and −b/2a− λ/2a ≥ 0

Figure 2: Illustration of ax2 + bx+ λ|x|
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Appendix

Consider a one-dimensional objective function

lλ(β
(k+1)
1 , · · · , β(k+1)

j−1 , βj , β
(k)
j+1, · · · , β

(k)
p ).

Let r̃−ji = yi − x′i(β
(k+1)
1 , · · · , β(k+1)

j−1 , 0, β
(k)
j+1, · · · , β

(k)
p ), then the above objective function is

simply written by

lλ(β
(k+1)
1 , · · · , β(k+1)

j−1 , βj , β
(k)
j+1, · · · , β

(k)
p )

=
1

2n

n∑
i=1

(r̃−ji − xijβj)
2 + λ|βj |+ const

=
1

2n
(

n∑
i=1

x2ij)︸ ︷︷ ︸
a

β2
j + (− 1

n

n∑
i=1

r̃−ji xij)︸ ︷︷ ︸
b

βj + λ|βj |+ const′
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Appendix

Then, we can apply the minimization algorithm of

min
x∈R

ax2 + bx+ λ|x|

to the lasso problem sequentially.
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