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Consider a convex optimization problem with an equality constraint:

min f0(x1, x2)

subject to h(x1, x2) = 0

Recall that −∇f0(x1, x2) is the directional derivative with which f0(x1, x2) decreases most

rapidly. Also ∇f0(x1, x2) is orthogonal to the tangent line at (x1, x2).
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If (x∗1, x
∗
2) is the optimal point, there exists a scalar ν∗ ∈ R such that

∇f0(x∗1, x∗2) + ν∗∇h(x∗1, x∗2) = 0 (1)
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If ν∗ is known,

min
x1,x2

f0(x1, x2) + ν∗h(x1, x2),

gives the solution of the constrained problem. Note that∇h(x∗1, x∗2) is proportional to∇f0(x∗1, x∗2).

Thus, we can apply an unconstrained optimization algorithm to

f0(x1, x2) + ν∗h(x1, x2).
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Optimization problem

• Consider the following optimization problem in the standard form.

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m (2)

hj(x) = 0, j = 1, . . . , p

• Denote the domain of optimization problem by

D =

(
∩mi=0 dom(fi)

)⋂(
∩pj=1 dom(hj)

)
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Lagrangian

• Define the Largrangian L : D × Rm × Rp → R associated with the problem (5):

L(x, λ, ν) =

{
f0(x) +

∑m
i=1 λifi(x) +

∑p
j=1 νjhj(x), for λ � 0

−∞, otherwise,

where λ = (λ1, · · · , λm)> and ν = (ν1, · · · , νp)>.
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Example 1 (Linear programming)

min 12x1 + 16x2

subject to −x1 − 2x2 ≤ −40
−x1 − x2 ≤ 30

−x1 ≤ 0, −x2 ≤ 0

More generally, we consider

min c>x

subject to Ax− b ≤ 0
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In our example, c = (12, 16)>, b = (−40, 30, 0, 0)> and

A =


−1 −2
−1 −2
−1 0

0 −1


L(x, λ) = c>x+ λ>(Ax− b).
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Example 2 (Quadratic function)

min f0(x1, x2) =
1

2
(x1 − 2)2 + 2(x2 − 1)2 + (x1 − 2)(x2 − 1)

subject to f1(x1, x2) = x21 + x22 − 0.5 ≤ 0

The Lagrangian function is given by

L(x1, x2, λ) =
1

2
x21 + 2x22 + x1x2 − 3x1 − 6x2 + 6 + λ(x21 + x22 − 0.5)

if λ ≥ 0.
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Example 3 (Ridge regression)

Let (yi, xi) ∈ R× Rp for i = 1, · · · , n be response-predict pairs and Y = (y1, · · · , yn)> and

X = (x1, · · · , xn)> ∈ Rn×p.

min
1

2n
‖Y −Xβ‖2

subject to ‖β‖2 − C ≤ 0

1>β = 0

The Lagrangian function is

L(β, λ, ν) =
1

2n
‖Y −Xβ‖2 + λ

(
‖β‖2 − C

)
+ ν(1>β).

if λ ≥ 0

Department of Statistics, University of Seoul KKT condition and optimality 11 / 68



Lagrange dual function

• Define the Lagrange dual function g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

f0(x) + m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)

 . (3)

• (λ, ν) is called dual variable or Lagrange multiplier vector and {(λ, ν) : λ � 0, ν ∈ Rp} is

called dual feasible set.
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Example 4 (Dual function in Example 1)

Let L(x, λ) = c>x+ λ>(Ax− b).

g(λ) = inf
x
(c+A>λ)>x− λ>b =

{
−λ>b if A>λ+ c = 0

−∞ otherwise.

The Lagrangian dual is finite only when A>λ+ c = 0.
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Example 5 (Dual function in Example 2)

The Lagrangian function is given by

L(x1, x2, λ) =
1

2
x21 + 2x22 + x1x2 − 3x1 − 6x2 + λ(x21 + x22 − 0.5).

For a fixed λ L(x1, x2, λ) is a quadratic function such that infx1,x2 L(x1, x2, λ) is easily

computed.

∂L(x1, x2, λ)

∂x1
= (1 + 2λ)x1 + x2 − 3 = 0

∂L(x1, x2, λ)

∂x2
= (4 + 2λ)x2 + x1 − 6 = 0
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(
1 + 2λ 2

1 4 + 2λ

)(
x1
x2

)
=

(
3

6

)

Thus, (
x1
x2

)
=

(
1 + 2λ 2

1 4 + 2λ

)−1(
3

6

)
=

(
6λ/(4λ2 + 10λ+ 2)

(12λ− 3)/(4λ2 + 10λ+ 2)

)

Since L(x1, x2, λ) with λ ≥ 0 is strictly convex, the solution is the minimizer of L(x1, x2, λ) for

the fixed λ.
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By plugging x1 = 6λ/(4λ2 + 10λ+ 2) and x2 = (12λ− 3)/(4λ2 + 10λ+ 2) into

L(x1, x2, λ) =
1

2
x21 + 2x22 + x1x2 − 3x1 − 6x2 + λ(x21 + x22 − 0.5),

its dual function g is obtained. (note that g is a function of λ.)
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Example 6 (Ridge regression)

The Lagrangian function is

L(β, λ, ν) =
1

2n
‖Y −Xβ‖2 + λ

(
‖β‖2 − C

)
+ ν(1>β)

=
1

2
β>
(
X>X

n
+ 2λI

)
β −

(
X>Y

n
− ν1

)>
β +

1

2n
Y >Y − λC

For a fixed β and ν, L(β, λ, ν) is minimized if

β =

(
X>X

n
+ 2λI

)−1(
X>Y

n
− ν1

)
.

If λ > 0 then
(

X>X
n + 2λI

)−1
exists.
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(Continue with the example)

Thus, the dual function is given by

g(λ, ν) = −1

2

(
X>Y

n
− ν1

)>(
X>X

n
+ 2λI

)−1(
X>Y

n
− ν1

)
−Cλ+

1

2n
Y >Y.

When X>X/n = I, the dual function is simply written. Denote X>Y/n by r. Then,

g(λ, ν) = − 1

(1 + 2λ)

(
nν2 − 2(r>1)ν + r>r

)
− Cλ+

1

2n
Y >Y
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Proposition 1 (convexity of dual function)

The dual function is always concave even when all functions in (5) are nonconvex.

(proof) For convenience of notations, let m = p = 1.

g(tλ+ (1− t)λ̃, tν + (1− t)ν̃)

= inf
x

(
f0(x)︸ ︷︷ ︸

=tf0(x)+(1−t)f0(x)

+
(
tλ+ (1− t)λ̃

)
f1(x) + (tν + (1− t)ν̃)h1(x)

)

≥ t inf
x

(f0(x) + λf1(x) + νh1(x)) + (1− t) inf
x

(
f0(x) + λ̃f1(x) + ν̃h1(x)

)
= tg(λ, ν) + (1− t)g(λ̃, ν̃).
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Proposition 2 (feasibility)

If x is feasible then f0(x) ≥ L(x, λ, ν).

(proof) If x is feasible then fi(x) ≤ 0 for i = 1, · · · ,m and hj(x) = 0 for j = 1, · · · , p. Since

λi ≥ 0 and νj ∈ R, λifi(x) ≤ 0 and νjhj(x) = 0. Thus,

f0(x) ≥ f0(x) +
n∑

i=1

λifi(x) +

m∑
j=1

νjhj(x).
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Proposition 3 (Weak Duality)

The lower bounds on the optimal value p∗ of the problem (5) is attained by the Lagrange dual

function as

g(λ, ν) ≤ p∗ (4)

for any λ ≥ 0 and any ν.
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(proof)

Let x̃ be an arbitrary feasible point for the (5). Then, fi(x̃) ≤ 0 for ∀i and hj(x̃) = 0 for ∀j
such that

m∑
i=1

λifi(x̃) +

p∑
j=1

νjhj(x̃) ≤ 0

for λ ≥ 0. L(x̃, λ, ν) ≤ f0(x̃) implies that

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν).

Since g(λ, ν) does not depend on x̃, we can conclude that

inf
x̃∈D

f0(x̃) ≥ g(λ, ν),
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Interpretation

• Consider the following optimization problem in the standard form.

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m (5)

hj(x) = 0, j = 1, . . . , p

• Unconstrained form:

min f0(x) +

m∑
i=1

I−(fi(x)) +

p∑
j=1

I0(hj(x))

where I−(u) = 0 if u ≤ 0 and ∞ otherwise and I0(u) = 0 if u = 0 and ∞ otherwise.

Thus, λifi(x) and νjhj(x) are linear approximation of I−(fi(x)) and I0(hj(x)).
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Conjugate function

Recall that the conjugate f∗ of a function f : Rn 7→ R is given by

f∗(y) = sup
x∈dom(f)

y>x− f(x)

(See slide 2 of the convex function)
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Proposition 4 (Dual function)

Consider an optimization problem,

min f0(x)

subject to Ax � b
Cx = d

Then, the dual function is

g(λ, ν) = −b>λ− d>ν − f∗0 (−A>λ− C>ν)

and dom(g) = {(λ, ν) : −A>λ− C>ν ∈ dom(f∗0 )}

proof) See p221.
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Example 7 (Equality constrained norm minimization)

min ‖x‖
subject to Ax = b,

where ‖ · ‖ is any norm. Then,

g(ν) = −b>ν − f0(−A>ν) =

{
−b>ν if ‖A>ν‖∗ ≤ 1

−∞ otherwise.
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(Continue with the example)

Definition 8 (Dual norm)

Let x ∈ X = Rn and ‖ · ‖ be a norm of Rn. Let L : X 7→ R be a linear functional. Denote a

collection of all Ls by X∗. Dual norm is defined by

‖L‖∗ =
∑
{|Lx| : ‖x‖ ≤ 1, x ∈ X}

Consider the Euclidean norm on X. Let a linear functional indexed by y ∈ X be

Ly : x ∈ X 7→ y>x.

Then the dual norm of y (actually a linear function Ly ) is define by ‖y‖∗ = sup{y>x : ‖x‖ ≤ 1}.
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Proposition 5 (Conjugate function of norm)

The conjugate function of f(x) = ‖x‖ is

f∗(y) =

{
0 ‖y‖∗ ≤ 1

∞ otherwise

Suppose that ‖y‖∗ > 1. Then there exists z such that y>z > 1 and ‖z‖ ≤ 1. Let x = tz for

t > 0 then

f∗(y) ≥ y>x− ‖x‖ = t(y>z − ‖z‖)→∞ as t→∞.

If ‖y‖∗ ≤ 1 then y>x ≤ ‖x‖‖y‖∗ ≤ ‖x‖. That is, y>x− ‖x‖ ≤ 0. Then f∗(y) = 0.
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(proof of example) By Proposition 4,

g(ν) = −b>ν − f∗0 (−A>ν) =

{
−b>ν ‖A>ν‖ ≤ 1

−∞ otherwise
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Lagrangian dual problem

• Define the Lagrange dual problem associated with the problem (5)

max g(λ, ν)

subject to λ ≥ 0 (6)

• (6) is convex optimization problem although the primal problem (5) is not convex.

• Denote dual optimal or optimal Lagrange multipliers by (λ∗, ν∗).
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Definition 9 (Duality Gap)

• Let the optimal value of the Lagrange dual problem (6) be d∗

• By (4), it is known that

d∗ ≤ p∗. (7)

• The optimal duality gap (p∗ − d∗) is always nonnegative.
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Strong duality

• Suppose that there exist x∗ and (λ∗, ν∗) such that

f0(x
∗) = g(λ∗, ν∗). (8)

• For any (λ, ν), g(λ, ν) is lower bound of the primal optimal value. That is, the equality

means that f(x∗) achieves the primal optimal value and x∗ is primal solution.

• In the view of the dual function g(λ, ν) the f(x∗) is the upper bound of the function. Hence,

(λ∗, ν∗) is a dual solution.

• In conclusion, the solution satisfying (8) implies that they are primal and dual optimal

solution.
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Definition 10 (Strong duality)

If duality gap is zero, the we call this condition the strong duality.

• The strong duality is crucial condition under which the primal problem could be solved by

the dual problem. (Note that the dual problem sometimes is easier to solve that the primal

problem.)

• Hence, the sufficient conditions for the strong duality is very useful.
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Theorem 11 (Strong duality under Slater’s condition)

Assume that fi(x) for i = 1, · · · ,m are convex and hj(x) for j = 1, · · · , p are linear. Let A be

p× n matrix corresponding to coefficients of hj(x)’s. If the rank of A is p and there exists an x

such that

fi(x) < 0, i = 1, . . . ,m, hj(x) = 0, j = 1, · · · , p,

then strong duality holds.

proof) See the appendix.
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Example 12 (Linear programming: standard form)

min c>x

subject to Ax = b

x � 0

The Lagrangian is

L(x, λ, ν) = c>x− λ>x+ ν>(Ax− b).
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L(x, λ, ν) = (c− λ+A>ν)>x− b>ν

If c − λ + A>ν = 0 then infx L = −b>ν. Thus, g(λ, ν) = −ν>b. If the problem has a feasible

solution, the strong duality holds by Slater’s condition. The dual problem is written by

max −b>ν
subject to A>ν + c = λ

λ � 0.
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Reparametrization y = −ν leads to

max b>y

subject to A>y + λ = c

λ � 0.
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Example 13 (Linear programming: profit maximization)

max c>x (profit)

subject to Ax− b ≤ 0 (resource constraints)

x � 0 (nonnegative production)

An equivalent problem is min−c>x with the same constraints. The Lagrangian is given by

L(x, λ1, λ2) = −c>x+ λ>1 (Ax− b)− λ>2 x

for λ1 � 0 and λ2 � 0.
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Its dual function is given by

g(λ1, λ2) =

{
−b>λ1 if A>λ1 − λ2 − c = 0

−∞ otherwise

Thus, the dual problem is written by

max −b>λ1
subject to A>λ1 − λ2 = c

λ1 � 0

λ2 � 0
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Equivalently, the dual problem is written by

min b>λ1

subject to A>λ1 � c
λ1 � 0.

(See the example of a dual problem in the textbook of the Management of science.)
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Theorem 14 (Nonconvex quadratic problem with strong duality)

min x>Ax+ 2b>x

subject to x>x ≤ 1

where A ∈ Sn and A � 0, and b ∈ Rn. This problem has a dual problem with no-gap dual

optimality:

max −
n∑

i=1

(q>i b)
2/(λi + λ)− λ

subject to λ ≥ −λmin(A),

where λi and qi are eigenvalues and corresponding eigenvectors of A.
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Geometric interpretation

Consider a standard form of convex optimization.

G = {(f1(x), · · · , fm(x), h1(x), · · · , hp(x), f0(x)) ∈ Rm × Rp × R}

The optimal value is given by

p∗ = inf{t : (u, v, t) ∈ G, u � 0, h = 0}.

Lagrangian function is written by the terms of dual variables and (u, v, t) ∈ G

(λ, ν, 1)>(u, v, t) =

m∑
i=1

λiui +

p∑
j=1

νjvj + t,

where (u, v, t) ∈ G
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Dual function is

g(λ, ν) = inf{(λ, ν, 1)>(u, v, t) : (u, v, t) ∈ G}

Thus, for (u, v, t) ∈ G

(λ, ν, 1)>(u, v, t) ≥ g(λ, ν).

Here, the inequality can be viewed as the supporting hyperplane for G (a>x ≥ b for ∀x ∈ C).
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Suppose that λ � 0. If u � 0 and ν = 0 then t ≥ (λ, ν, 1)>(u, v, 1). Therefore,

p∗ = inf{t : (u, v, t) ∈ G, u � 0, v = 0}
≥ inf{(λ, ν, 1)>(u, v, t) : (u, v, t) ∈ G, u � 0, v = 0}
≥ inf{(λ, ν, 1)>(u, v, t) : (u, v, t) ∈ G}
= g(λ, ν)
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Figure 1: Geometric interpretation of dual function
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Figure 2: Geometric interpretation of dual gab

Department of Statistics, University of Seoul KKT condition and optimality 46 / 68



Let A = {(u, v, t) : ∃x ∈ D, fi(x) ≤ ui, i = 1, · · · ,m, hi(x) = vi, i = 1, · · · , p, f0(x) ≤ t}
Then, p∗ = inf{t : (0, 0, t) ∈ A}

For λ � 0,

g(λ, ν) = inf{(λ, ν, 1)>(u, v, t) : (u, v, t) ∈ A},

because (λ, ν, 1)>(u, v, t) is affine function.
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Figure 3: Shaded region denotes A
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For (u, v, t) ∈ A,

(λ, ν, 1)>(u, v, t) ≥ g(λ, ν)

Since (0, 0, p∗) ∈ bd(A), we have p∗ = (λ, ν, 1)>(0, 0, p∗) ≥ g(λ, ν). (weak duality) If there

exists (λ∗, ν∗, 1) such that p∗ = (λ∗, ν∗, 1)>(0, 0, p∗) = g(λ∗, ν∗) then the strong duality holds.

(the existence of a nonvertical support hyperplane to A and its boundary point (0, 0, p∗)
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Figure 4: Strong duality
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KKT optimality conditions
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Sufficiency

• Assume that the functions f0, . . . , fm, h1, . . . , hp are differentiable. fis are convex and hjs

are affine.

• KKT conditions

fi(x
∗) ≤ 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑

j=1

ν∗j∇hj(x∗) = 0,

• For convex optimization problem, if there exists x∗ and (λ∗, ν∗) satisfying the KKT

condition, then x∗ and (λ∗, ν∗) are primal and dual optimal solution, respectively.
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Sufficiency

proof)

f0(x
∗) = f0(x

∗) +

n∑
i=1

λ∗i fi(x
∗) +

p∑
j=1

ν∗j hj(x
∗) ≥ g(λ∗, ν∗)

Since L(x, λ∗, ν∗) = f0(x) +
∑n

i=1 λ
∗
i fi(x) +

∑p
j=1 ν

∗
j hj(x) is convex function of x, x∗ is the

minimizer of L(x, λ∗, ν∗) and

f0(x
∗) = L(x∗, λ∗, ν∗) = inf

x∈D
L(x, λ∗, ν∗) = g(λ∗, ν∗).

That is, the proof is completed by (8).
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Necessity

Assume that the strong duality holds. If x∗ and (λ∗, ν∗) are primal and dual solution of (5).

Then these solutions satisfy the KKT conditions.

proof)

f0(x
∗) = g(λ∗, ν∗)

= inf
x∈D

f0(x) + m∑
i=1

λ∗i fi(x) +

p∑
j=1

ν∗j hj(x)


≤ f0(x

∗) +

m∑
i=1

λ∗i fi(x
∗)︸ ︷︷ ︸

≤0

+

p∑
j=1

ν∗j hj(x
∗)︸ ︷︷ ︸

=0

≤ f0(x
∗)
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Necessity

From the above inequality we know that

f0(x
∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
j=1

ν∗j hj(x
∗) = inf

x∈D
L(x, λ∗, ν∗).

That is, x∗ is a minimizer of L(x, λ∗, ν∗) such that

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑

j=1

ν∗j∇hj(x∗) = 0.
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KKT conditions

• Primal feasibility: fi(x
∗) ≤ 0, i = 1, . . . ,m, hj(x

∗) = 0, j = 1, . . . , p.

• Dual feasibility: λ∗i ≥ 0, i = 1, . . . ,m.

• Complementary slackness : λ∗i fi(x
∗) = 0, i = 1, . . . ,m.

• Stationarity: ∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi(x∗) +

∑p
j=1 ν

∗
j∇hj(x∗) = 0,

Department of Statistics, University of Seoul KKT condition and optimality 56 / 68



KKT conditions

• If we find the (x∗, λ∗, ν∗) satisfying the KKT conditions, then they are the primal and

dual optimal solutions by sufficiency.

• If the Slater’s condition holds, the optimal solutions necessarily satisfy the KKT

conditions. However, without the strong duality, the optimal solutions may not satisfies

the KKT conditions.
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Example 15 (quadratic optimization)

• Consider the convex problem

min f(x) =
1

2
x>Px+ q>x+ r

subject to Ax = b

where P ∈ Sn
+, A ∈ Rp×n (Sn

+ : positive semidefinite n× n matrices)

• The Lagrangian is

L(x, ν) =
1

2
x>Px+ q>x+ r + ν>(Ax− b)
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• The KKT conditions:

Ax∗ = b, Px∗ + q +A>ν∗ = 0,

where x∗ is the primal optimal and ν is the dual optimal solution.

• The equation [
P AT

A 0

][
x∗

ν∗

]
=

[
−q
b

]

is called the KKT system. By solving the equation, we can obtain the primal and dual

solutions.
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Appendix
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(proof of strong duality under Slater’s condition)

• Let b ∈ Rm be constant vector in hj(x)s.

• Let p∗ be primal optimal value, u = (u1, · · · , um) and v = (v1, · · · , vp).
• Define two subgraphs (epigraphs) as

A =
⋃
x∈D
{(u,v, t) : ui ≥ fi(x), i = 1, . . . ,m,

vj = hj(x), j = 1, . . . , p, t ≥ f0(x)}
B = {(0,0, t) ∈ Rm ×Rp ×R | t < p∗}
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Figure 5: Regions of A and B
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• It can be shown that both A and B are convex and A ∩ B is empty (see p 235.)
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• Because A ∩ B is empty, there is a nonzero vector (λ, ν, µ) ∈ Rm × Rp × R and α ∈ R
such that

λ>u+ ν>v + µt ≥ α for (u,v, t) ∈ A (9)

λ>u+ ν>v + µt ≤ α for (u,v, t) ∈ B (10)

by the separating hyperplane theorem. (see p 45)
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• Since u and t is unbounded above, λ ≥ 0 and µ ≥ 0 by (9). In addition, because µt ≤ α
for all t < p∗ in (10), µp∗ ≤ α. Choose an arbitrary x ∈ D and let

u = (f1(x), · · · , fm(x))>, v = (h1(x), · · · , hp(x))> and t = f0(x) then, (u,v, t) ∈ A
which implies

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x) + µf0(x) ≥ α ≥ µp∗.

• That is, the (λ, ν, µ) obtained by separating hyperplane theorem satisfies

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x) + µf0(x) ≥ µp∗.

for all x ∈ D
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• First assume that µ > 0 then x ∈ D

f0(x) +

m∑
i=1

λi
µ
fi(x) +

p∑
j=1

νj
µ
hj(x) ≥ p∗.

Note that the left hand side is Lagrangian L(x, λ/µ, ν/µ)

• Minimizing over x ∈ D leads to g(λ/µ, ν/µ) ≥ p? such that g(λ/µ, ν/µ) = p∗ by weak

duality.
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• Assume that µ = 0, we can obtain for all x ∈ D

m∑
i=1

λifi(x) + ν>(Ax− b) ≥ 0. (11)

Let x̃ be a feasible point satisfying the Slater’s condition, then we have
∑m

i=1 λifi(x̃) ≥ 0.

Since fi(x̃) < 0 and λ ≥ 0, we know that λ = 0.

Department of Statistics, University of Seoul KKT condition and optimality 67 / 68



• From (λ, ν, µ) 6= 0, λ = 0 and µ = 0, it is known that ν 6= 0 and ν>(Ax− b) ≥ 0 for all

x ∈ D from (11). However, the x̃ also satisfies ν>(Ax̃− b) = 0, since x̃ ∈ relint D.

However, there exists a point x ∈ D such that ν>(Ax− b) < 0 unless A>ν = 0. This is

contradiction of our assumption that rank A = p. That is, µ = 0 is impossible.
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