## Interior Point Method I

Department of Statistics
November 9, 2023
University of Seoul

## Interior Point Methods

## Interior Point Methods

Consider a convex optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0 \quad i=1, \ldots, m \\
& A x=b,
\end{aligned}
$$

where $f_{0}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex and twice continuously differentiable, $A \in \mathbb{R}^{p \times n}$ with $\operatorname{rank}(A)=p<n$.

For simplicity, assume that $f_{0}$ is quadratic and $f_{i}$ for $i=1, \cdots, m$ are linear.

If Slater's constraint qualification holds, $x^{*}$ and $\left(\lambda^{*}, \nu^{*}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{p}$ are primal and dual solution that the follow KKT conditions

$$
\begin{align*}
A x^{*}=b, f_{i}\left(x^{*}\right) & \leq 0, i=1, \ldots, m \\
\lambda^{*} & \geq 0 \\
\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+A^{\top} \nu^{*} & =0  \tag{2}\\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, i=1, \ldots, m
\end{align*}
$$

Without inequality constraints, the above KKT conditions derive a linear system that can be easily solved. However, the inequality constraints lead to a different story about the optimization problem.

## Logarithmic barrier function

Consider an equivalent optimization problem to the original one:

$$
\begin{aligned}
\text { minimize } & f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
\text { subject to } & A x=b,
\end{aligned}
$$

where

$$
I_{-}(u)=\left\{\begin{array}{cc}
0 & u \leq 0 \\
\infty & u>0
\end{array}\right.
$$

Note that $I_{-}$is not differentiable, which makes the problem computationally prohibitive. Instead, we use a differentiable function (see Figure 1 on the next page),

$$
\hat{I}_{-}(u)=-(1 / t) \log (-u) \text { for } t>0
$$

The original optimization problem is relaxed by

$$
\begin{align*}
\text { minimize } & f_{0}(x)+\sum_{i=1}^{m}-(1 / t) \log \left(-f_{i}(x)\right)  \tag{4}\\
\text { subject to } & A x=b .
\end{align*}
$$

For a large $t>0$ the relaxed objective function is well approximated to (3). Moreover, the second-order approximated algorithm, such as Newton's method, can be applied to solve (4) for fixed $t$. (see Example 15 in the slide of the dual problem)


Figure 1: The dotted line displays $I_{-}(u)$, and the solid curves display $\left.\hat{I}_{( } u\right)$. As $t$ increases, $\hat{I}_{-}(u)$ becomes tighter above $\hat{I}_{( }(u)$

Recall the Newton's method applied to (4).

- Set an initial $x^{(k)}$ for $k=0$ where $A x^{(k)}=b$ and $f_{i}\left(x^{(k)}\right)<0$.
- Obtain the quadratic function $g\left(x \mid x^{(k)}\right)$ by the second order approximation of the objective function (4) at $x^{(k)}$.
- Let $x=x^{(k)}+\nu$ and solve the following problem:

$$
\begin{gathered}
\min _{\nu} \quad g\left(x^{(k)}+\nu \mid x^{(k)}\right) \\
\quad \text { subject } \quad A \nu=0
\end{gathered}
$$

(The problem can be easily solved.)

- Update and repeat.

Let $\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)$ which is called the logarithmic barrier function for problem (1).
Note that

$$
\operatorname{dom}(\phi)=\left\{x \in \mathbb{R}^{n} \mid f_{i}<0, i=1, \ldots, m\right\} .
$$

Then we consider the equivalent optimization problem to (4) as

$$
\begin{align*}
\operatorname{minimize} & t f_{0}(x)+\phi(x)  \tag{5}\\
\text { subject to } & A x=b,
\end{align*}
$$

and denote the solution by $x^{*}(t)$. Next we investigate the properties of $x^{*}(t)$.

## Central path

Let $x^{*}(t)$ be a solution of (5). The central path is a collection of $x^{*}(t)$ for $t>0$. By KKT conditions (convex objective function with equality constraints),

- (Stationary Condition) There exists a $\hat{\nu} \in \mathbb{R}^{p}$ such that

$$
\begin{equation*}
\mathbf{0}=t \nabla f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \frac{1}{-f_{i}\left(x^{*}(t)\right)} \nabla f_{i}\left(x^{*}(t)\right)+A^{\top} \hat{\nu} \tag{6}
\end{equation*}
$$

- (Feasibility condition) $x^{*}(t)$ is strictly feasible

$$
A x^{*}(t)=b, \quad f_{i}\left(x^{*}(t)\right)<0, i=1, \ldots, m ;
$$

Let

$$
\lambda_{i}^{*}=-\frac{1}{t f_{i}\left(x^{*}(t)\right)}, i=1, \ldots, m, \quad \nu^{*}=\hat{\nu} / t,
$$

then we will claim that the pair $\lambda^{*}, \nu^{*}$ dual feasible. (Note that $\lambda^{*}$ and $\nu^{*}$ depend on $t$.)

- $\lambda^{*}>\mathbf{0}$ because $f_{i}\left(x^{*}(t)\right)<0, i=1, \ldots, m$.
- $\nabla f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \lambda^{*} \nabla f_{i}\left(x^{*}(t)\right)+A^{\top} \nu^{*}=0$ implies that $x^{*}$ minimizes the Lagrangian,

$$
L\left(x, \lambda^{*}, \nu^{*}\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)+\left(\nu^{*}\right)^{\top}(A x-b) .
$$

Hence, we know that the dual function associated with (1) is

$$
\begin{aligned}
g\left(\lambda^{*}, \nu^{*}\right) & \left.=\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)\right)+\left(\nu^{*}\right)^{\top}(A x-b)\right) \\
& =f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}(t)\right)+\left(\nu^{*}\right)^{\top}\left(A x^{*}(t)-b\right) \\
& =f_{0}\left(x^{*}(t)\right)-m / t .
\end{aligned}
$$

The first equality holds by the definition of dual function, and the second equality holds by the optimality of $L\left(x, \lambda^{*}, \nu^{*}\right)$, and the last equality holds because

$$
\begin{aligned}
\lambda_{i}^{*} f_{i}\left(x^{*}(t)\right)=-\frac{1}{t f_{i}\left(x^{*}(t)\right)} f_{i}\left(x^{*}(t)\right) & =-1 / t, \\
\left(A x^{*}(t)-b\right) & =0 .
\end{aligned}
$$

## Theorem 1 (suboptimality)

Let $p^{*}$ be the optimal value of (1), then

$$
f_{0}\left(x^{*}(t)\right)-p^{*} \leq m / t .
$$

(proof) Let $p^{*}$ be the optimal value of (1), then $g\left(\lambda^{*}, \nu^{*}\right) \leq p^{*}$ by weak duality. Thus,

$$
f_{0}\left(x^{*}(t)\right)-m / t=g\left(\lambda^{*}, \mu^{*}\right) \leq p^{*} .
$$

Finally, we obtain $f_{0}\left(x^{*}(t)\right)-p^{*} \leq m / t .\left(x^{*}(t)\right.$ is no more than $m / t$-suboptimal)

## The centrality condition (perturbed KKT conditions)

The KKT conditions for a relaxed problem can be understood as a modified KKT condition:

- $x=x^{*}(t)$ is a point on the central path if and only if there exists $\lambda=\lambda^{*}(t)$ and $\nu=\nu^{*}(t)$ such that

$$
\begin{align*}
A x=b, \quad f_{i}(x) & \leq 0, \quad i=1, \ldots, m \\
\lambda & >0 \\
\left.\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i} x\right)+A^{T} \nu & =0  \tag{7}\\
\lambda_{i} f_{i}(x) & =-1 / t, \quad i=1, \ldots, m
\end{align*}
$$

- The complementary slackness condition $-\lambda_{i} f_{i}(x)=0$ is replaced by $\lambda_{i} f_{i}(x)=-1 / t$.
interpretation of the central path
- The inequality conditions are relaxed by a barrier function.
- The associated KKT conditions are relaxed. The complementary slackness condition is relaxed as

$$
\lambda_{i} f_{i}(x)=-1 / t
$$

- The modified problem can be solved by the Newton-Raphson algorithm with equality constraints.
- The solution to the problem is suboptimal.


## The Barrier method

If we set an upper bound of error as $\epsilon>0$, we only let $t=m / \epsilon$ and solve the modified problem. However, we encounter the problem between numerical stability and accuracy since the algorithm becomes unstable for a large $t$.
(HW) Discuss the above problem related to the convergence of Newton's algorithm.

## Barrier method algorithm

- Given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$
- Repeat:
- Centering step : Compute $x^{*}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$, starting at $x$
- Update $x:=x^{*}(t)$
- Stopping criterion : quit if $m / t<\epsilon$
- Increase $t: t:=\mu t$
- Execution of step 1 as a centering step or an outer iteration
- Newton iterations or steps executed during the centering step as inner iterations
- At each inner step, we have a primal feasible point
- At each outer step, we have a dual feasible point


## Example 2 (Linear programming)

| $\underset{x}{\operatorname{minimize}}$ | $\mathbf{c}^{T} x$ |
| :---: | :--- |
| subject to | $A x=\mathbf{b}$ |
|  | $x \succeq 0$ |

where $A$ is $p \times n(p<n)$ full rank matrix, $\mathbf{c} \in \mathbb{R}^{p}, \mathbf{b} \in \mathbb{R}^{n}$.

The objective function with barrier function is given by

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & B(x, t)=t \mathbf{c}^{T} x-\sum_{i=1}^{n} \log \left(x_{i}\right) \\
\text { subject to } & A x=b \tag{9}
\end{array}
$$

where real $t>0$

The gradient and hessian of (9) is given by

$$
\begin{aligned}
\text { Gradient } & : \quad \nabla_{x} B(x, t)=t \mathbf{c}-X^{-1} e \\
\text { Hessian } & : \quad \nabla_{x}^{2} B(x, t)=X^{-2}
\end{aligned}
$$

where $X=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right), e=(1, \ldots, 1)^{T}$. The quadratic function is obtained by secondorder approximation near $x$ of the logarithmic barrier function:

$$
\begin{array}{rl}
\min _{\Delta \in \mathbb{R}^{p}} & t \mathbf{c}^{T} x-\sum_{i=1}^{n} \log \left(x_{i}\right)+\left(t \mathbf{c}-X^{-1} e\right)^{T} \Delta+\frac{1}{2} \Delta^{T} X^{-2} \Delta \\
\text { subject to } & A(x+\Delta)=\mathbf{b}
\end{array}
$$

Note that $A x=\mathbf{b}$.

The corresponding Lagrangian function is given by

$$
L(v, \nu)=t \mathbf{c}^{T} x-\sum_{i=1}^{n} \log \left(x_{i}\right)+\left(t \mathbf{c}-X^{-1} e\right)^{T} \Delta+\frac{1}{2} \Delta^{T} X^{-2} \Delta+\nu^{T} A \Delta
$$

The KKT conditions are

$$
\begin{aligned}
t \mathbf{c}-X^{-1} e+X^{-2} \Delta+A^{T} \nu & =0 \text { (stationarity) } \\
A \Delta & =0 \text { (primal feasibility) }
\end{aligned}
$$

and the linear equations corresponding to the conditions are written by

$$
\left[\begin{array}{cc}
X^{-2} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta \\
\nu
\end{array}\right]=\left[\begin{array}{c}
-t \mathbf{c}+X^{-1} \\
0
\end{array}\right] .
$$

Since $A$ is full rank, the linear system has the unique solution (primal and dual solution).

The solution is given by

$$
\begin{aligned}
{\left[\begin{array}{l}
\Delta \\
\nu
\end{array}\right] } & =\left[\begin{array}{cc}
X^{-2} & A^{T} \\
A & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
-t \mathbf{c}+X^{-1} \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
X^{2}-X^{2} A^{T} \Theta^{-1} A X^{2} & X^{2} A^{T} \Theta^{-1} \\
\Theta^{-1} A X^{2} & -\Theta^{-1}
\end{array}\right]\left[\begin{array}{c}
-t \mathbf{c}+X^{-1} \\
0
\end{array}\right]
\end{aligned}
$$

where $\Theta=-A X^{2} A^{T}$. (See the inversion of block matrix for the second equation)

How to find an initial $x$ satisfying $A x=b$.

- $x=\left(A^{\top} A\right)^{-} A^{\top} b$ where $G^{-}$is the generalized inverse matrix of $G$.
- Solve $\min _{x}\|A x-b\|^{2}$ by the gradient method.


## Example 3 (Isotonic regression)

$$
\begin{aligned}
\min _{\beta_{0}, \cdots, \beta_{p}} & \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i 1}-\cdots-\beta_{p} x_{i p}\right)^{2} \\
\text { subject to } & \beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{p}
\end{aligned}
$$

(hint) Let $\delta_{j}=\beta_{j}-\beta_{j-1}$ for $j \geq 2$ then $\delta_{j} \geq 0$.

