Interior Point Method I

Department of Statistics November 9, 2023

University of Seoul

Interior Point Methods

Interior Point Methods

Consider a convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i = 1, ..., m$ (1)
 $Ax = b,$

where $f_0, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex and twice continuously differentiable, $A \in \mathbb{R}^{p \times n}$ with $\operatorname{rank}(A) = p < n$.

For simplicity, assume that f_0 is quadratic and f_i for $i = 1, \cdots, m$ are linear.

If Slater's constraint qualification holds, x^* and $(\lambda^*, \nu^*) \in \mathbb{R}^m \times \mathbb{R}^p$ are primal and dual solution that the follow KKT conditions

$$Ax^{*} = b, \ f_{i}(x^{*}) \leq 0, \ i = 1, \dots, m$$
$$\lambda^{*} \geq 0$$
$$\nabla f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + A^{\top} \nu^{*} = 0$$
$$\lambda_{i}^{*} f_{i}(x^{*}) = 0, \ i = 1, \dots, m$$
(2)

Without inequality constraints, the above KKT conditions derive a linear system that can be easily solved. However, the inequality constraints lead to a different story about the optimization problem.

Logarithmic barrier function

Consider an equivalent optimization problem to the original one:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$
 (3)
subject to $Ax = b$,

where

$$I_{-}(u) = \begin{cases} 0 & u \le 0\\ \infty & u > 0. \end{cases}$$

Note that I_{-} is not differentiable, which makes the problem computationally prohibitive. Instead, we use a differentiable function (see Figure 1 on the next page),

 $\hat{I}_{-}(u) = -(1/t)\log(-u)$ for t > 0.

The original optimization problem is relaxed by

minimize
$$f_0(x) + \sum_{i=1}^m -(1/t)\log(-f_i(x))$$
 (4)
subject to $Ax = b.$

For a large t > 0 the relaxed objective function is well approximated to (3). Moreover, the second-order approximated algorithm, such as Newton's method, can be applied to solve (4) for fixed t. (see Example 15 in the slide of the dual problem)

Figure 1: The dotted line displays $I_{-}(u)$, and the solid curves display $\hat{I}_{(u)}$. As t increases, $\hat{I}_{-}(u)$ becomes tighter above $\hat{I}_{(u)}$

Recall the Newton's method applied to (4).

- Set an initial $x^{(k)}$ for k = 0 where $Ax^{(k)} = b$ and $f_i(x^{(k)}) < 0$.
- Obtain the quadratic function $g(x|x^{(k)})$ by the second order approximation of the objective function (4) at $x^{(k)}$.
- Let $x = x^{(k)} + \nu$ and solve the following problem:

$$\min_{\nu} g(x^{(k)} + \nu | x^{(k)})$$
 subject $A\nu = 0.$

(The problem can be easily solved.)

• Update and repeat.

Let $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$ which is called the logarithmic barrier function for problem (1). Note that

dom
$$(\phi) = \{x \in \mathbb{R}^n \mid f_i < 0, i = 1, \dots, m\}.$$

Then we consider the equivalent optimization problem to (4) as

minimize $tf_0(x) + \phi(x)$ (5) subject to Ax = b,

and denote the solution by $x^*(t)$. Next we investigate the properties of $x^*(t)$.

Central path

Let $x^*(t)$ be a solution of (5). The central path is a collection of $x^*(t)$ for t > 0. By KKT conditions (convex objective function with equality constraints),

• (Stationary Condition) There exists a $\hat{\nu} \in \mathbb{R}^p$ such that

$$\mathbf{0} = t\nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + A^\top \hat{\nu}$$
(6)

• (Feasibility condition) $x^*(t)$ is strictly feasible

$$Ax^*(t) = b, \qquad f_i(x^*(t)) < 0, \ i = 1, \dots, m;$$

Let

$$\lambda_i^* = -\frac{1}{tf_i(x^*(t))}, \ i = 1, \dots, m, \qquad \nu^* = \hat{\nu}/t,$$

then we will claim that the pair λ^*, ν^* dual feasible. (Note that λ^* and ν^* depend on t.)

• $\lambda^* > 0$ because $f_i(x^*(t)) < 0, \ i = 1, ..., m$.

• $\nabla f_0(x^*(t)) + \sum_{i=1}^m \lambda^* \nabla f_i(x^*(t)) + A^\top \nu^* = 0$ implies that x^* minimizes the Lagrangian,

$$L(x,\lambda^*,\nu^*) = f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + (\nu^*)^\top (Ax - b).$$

Hence, we know that the dual function associated with (1) is

$$g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + (\nu^*)^\top (Ax - b) \right)$$

= $f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^* f_i(x^*(t)) + (\nu^*)^\top (Ax^*(t) - b)$
= $f_0(x^*(t)) - m/t.$

The first equality holds by the definition of dual function, and the second equality holds by the optimality of $L(x, \lambda^*, \nu^*)$, and the last equality holds because

$$\lambda_i^* f_i(x^*(t)) = -\frac{1}{t f_i(x^*(t))} f_i(x^*(t)) = -1/t,$$

(Ax^{*}(t) - b) = 0.

Theorem 1 (suboptimality)

Let p^* be the optimal value of (1), then

$$f_0(x^*(t)) - p^* \le m/t.$$

(proof) Let p^* be the optimal value of (1), then $g(\lambda^*, \nu^*) \leq p^*$ by weak duality. Thus,

$$f_0(x^*(t)) - m/t = g(\lambda^*, \mu^*) \le p^*.$$

Finally, we obtain $f_0(x^*(t)) - p^* \le m/t$. ($x^*(t)$ is no more than m/t-suboptimal)

The centrality condition (perturbed KKT conditions)

The KKT conditions for a relaxed problem can be understood as a modified KKT condition:

• $x = x^*(t)$ is a point on the central path if and only if there exists $\lambda = \lambda^*(t)$ and $\nu = \nu^*(t)$ such that

$$Ax = b, \quad f_i(x) \leq 0, \qquad i = 1, \dots, m$$
$$\lambda > 0$$
$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i x) + A^T \nu = 0$$
$$\lambda_i f_i(x) = -1/t, \qquad i = 1, \dots, m$$
(7)

• The complementary slackness condition $-\lambda_i f_i(x) = 0$ is replaced by $\lambda_i f_i(x) = -1/t$.

interpretation of the central path

- The inequality conditions are relaxed by a barrier function.
- The associated KKT conditions are relaxed. The complementary slackness condition is relaxed as

$$\lambda_i f_i(x) = -1/t$$

- The modified problem can be solved by the Newton-Raphson algorithm with equality constraints.
- The solution to the problem is suboptimal.

The Barrier method

If we set an upper bound of error as $\epsilon > 0$, we only let $t = m/\epsilon$ and solve the modified problem. However, we encounter the problem between numerical stability and accuracy since the algorithm becomes unstable for a large t.

(HW) Discuss the above problem related to the convergence of Newton's algorithm.

Barrier method algorithm

- Given strictly feasible $x,\,t:=t^{(0)}>0,\,\mu>1,$ tolerance $\epsilon>0$
- Repeat:
 - Centering step : Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b, starting at x
 - Update $x := x^*(t)$
 - Stopping criterion : quit if $m/t < \epsilon$
 - Increase t: $t := \mu t$

- Execution of step 1 as a centering step or an outer iteration
- Newton iterations or steps executed during the centering step as inner iterations
- At each inner step, we have a primal feasible point
- At each outer step, we have a dual feasible point

Example 2 (Linear programming)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \mathbf{c}^{T}x\\ \text{subject to} & Ax = \mathbf{b}\\ & x \succeq 0 \end{array}$$

(8)

where A is $p \times n(p < n)$ full rank matrix, $\mathbf{c} \in \mathbb{R}^p$, $\mathbf{b} \in \mathbb{R}^n$.

The objective function with barrier function is given by

minimize
$$B(x,t) = t\mathbf{c}^T x - \sum_{i=1}^n \log(x_i)$$

subject to $Ax = b$ (9)

where real t > 0

The gradient and hessian of (9) is given by

$$\label{eq:Gradient} \begin{array}{ll} {\rm Gradient} & : & \nabla_x B(x,t) = t{\bf c} - X^{-1}e \\ {\rm Hessian} & : & \nabla_x^2 B(x,t) = X^{-2} \end{array}$$

where $X = \text{diag}(x_1, \ldots, x_n)$, $e = (1, \ldots, 1)^T$. The quadratic function is obtained by secondorder approximation near x of the logarithmic barrier function:

$$\begin{split} \min_{\Delta \in \mathbb{R}^p} & t\mathbf{c}^T x - \sum_{i=1}^n \log(x_i) + (t\mathbf{c} - X^{-1}e)^T \Delta + \frac{1}{2} \Delta^T X^{-2} \Delta \\ \text{subject to} & A(x + \Delta) = \mathbf{b} \end{split}$$

Note that $Ax = \mathbf{b}$.

The corresponding Lagrangian function is given by

$$L(v,\nu) = t\mathbf{c}^{T}x - \sum_{i=1}^{n} \log(x_{i}) + (t\mathbf{c} - X^{-1}e)^{T}\Delta + \frac{1}{2}\Delta^{T}X^{-2}\Delta + \nu^{T}A\Delta$$

The KKT conditions are

$$t\mathbf{c} - X^{-1}e + X^{-2}\Delta + A^T\nu = 0$$
 (stationarity)
 $A\Delta = 0$ (primal feasibility)

and the linear equations corresponding to the conditions are written by

$$\begin{bmatrix} X^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta \\ \nu \end{bmatrix} = \begin{bmatrix} -t\mathbf{c} + X^{-1} \\ 0 \end{bmatrix}.$$

Since A is full rank, the linear system has the unique solution (primal and dual solution).

The solution is given by

$$\begin{bmatrix} \Delta \\ \nu \end{bmatrix} = \begin{bmatrix} X^{-2} & A^T \\ A & 0 \end{bmatrix}^{-1} \begin{bmatrix} -t\mathbf{c} + X^{-1} \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} X^2 - X^2 A^T \Theta^{-1} A X^2 & X^2 A^T \Theta^{-1} \\ \Theta^{-1} A X^2 & -\Theta^{-1} \end{bmatrix} \begin{bmatrix} -t\mathbf{c} + X^{-1} \\ 0 \end{bmatrix}$$

where $\Theta = -AX^2A^T$. (See the inversion of block matrix for the second equation)

How to find an initial x satisfying Ax = b.

- $x = (A^{\top}A)^{-}A^{\top}b$ where G^{-} is the generalized inverse matrix of G.
- Solve $\min_x ||Ax b||^2$ by the gradient method.

Example 3 (Isotonic regression)

$$\begin{split} \min_{\beta_0, \cdots, \beta_p} & \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \cdots - \beta_p x_{ip})^2 \\ \text{subject to} & \beta_1 \le \beta_2 \le \cdots \le \beta_p \end{split}$$

(hint) Let $\delta_j = \beta_j - \beta_{j-1}$ for $j \ge 2$ then $\delta_j \ge 0$.