Introduction to Optimization

Jong-June Jeon

Department of Statistics, University of Seoul

Sep, 2023

Department of Statistics, University of Seoul Introduction to Optimization

э

イロト イボト イヨト イヨト

과목 소개

- 과목명: 최적화, 빅데이터최적화 방법론
- 강의실강의시간 : 33-607 / (목) 18시-20시 20분
- 평가: 중간고사(40%), 기말고사(40%), 과제(20%), 출석 (공지사항 참조).
 - 중간 혹은 기말고사 미응시인 경우 F.
- 교재: Convex optimization, Stenphen Boyd

교수 소개

- 이름: 전종준
- 연구실: 33-712 (미래관)
- 관련연구목록: 최적화 방법론 개발
 - Learning Multiple Quantiles with Neural Networks (2021)
 - Primal path algorithm for compositional data analysis (2020)
 - The sparse Luce model (2018)
 - Adaptive stochastic gradient method under two mixing heterogeneous models(2017)
 - Abrupt change point detection of annual maximum precipitation using fused lasso (2016)
- 현재 진행 연구
 - Optimization for sparse Ranking models

Keywords

- Optimization problem
- Objective function, variable, constraints, feasible set, solution
- Unconstrained optimization problem, constrained optimization problem

• ...

What is the optimization problem? Decision-making under constraints.

Let $f : \mathbb{R}^p \mapsto \mathbb{R}$ and $X \subset \mathbb{R}^p$. The optimization problem is typically given by

$$\begin{array}{ll} \min_{x} & f(x) \\ \text{st.} & x \in X. \end{array}$$

Here we denote f as $f : x \mapsto f(x)$. We call x a variable, f an objective function, X a feasible set, and $x \in X$ the constraint.

Example 1 (Regression problem)

Let $(y_i, x_i) \in \mathbb{R} \times \mathbb{R}^p$ for $i = 1, \dots, n$ be response-predictor pairs (constants) and $\beta \in \mathbb{R}^p$ be variable.

$$L: \beta \mapsto \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\top} \beta)^2.$$

The solution of the following optimization problem is obtained by solving

$$\min_{\beta} \qquad L(\beta) \\ \text{st.} \qquad \beta \in \mathbb{R}^p$$

The solution is called the OLS (ordinary least squares) estimator. Since the feasible set is the whole set of \mathbb{R}^p , the optimization problem is called an unconstrained optimization problem.

Example 2 (Logistic regression problem)

Let $(y_i, x_i) \in \{0, 1\} \times \mathbb{R}^p$ be given response-predictor pairs and $\beta \in \mathbb{R}^p$.

$$L: \beta \mapsto -\frac{1}{n} \sum_{i=1}^{n} \left(y_i x_i^\top \beta - \log(1 + \exp(x_i^\top \beta)) \right)$$

The MLE of the logistic regression model is the solution of the following optimization problem:

$$\min_{\beta} \quad L(\beta) \\ \text{st.} \quad \beta \in \mathbb{R}^p.$$

Example 3 (MLE for a general case)

Let $y|x \sim f(y|x;\theta)$ be the conditional density function of y for a given x, where $\theta \in \Theta \subset \mathbb{R}^p$ is the parameter of the density function. Let (y_i, x_i) be a random sample from $f(y|x;\theta)$. In our optimization problem, (y_i, x_i) s are constants, and θ is a variable.

$$L: \theta \mapsto -\sum_{i=1}^{n} \log f(y_i | x_i; \theta)$$

The MLE of the unknown θ is given by

$$\min_{\theta} \quad L(\theta) \\ \text{st.} \quad \theta \in \Theta.$$

Example 4 (L_1 -Compressed Sensing) Let $Y \in \mathbb{R}^m$ be an original signal vector and $X \in \mathbb{R}^{m \times n}$ be a filter matrix and $\beta \in \mathbb{R}^n$ the sparse signal.

$$L:\beta\mapsto \|\beta\|_1$$

The L_1 -Compressed Sensing is the solution to the following problem:

$$\min_{\beta} \qquad L(\beta) \\ \text{st.} \qquad \beta \in \{\beta : Y = X\beta\}$$

Example 5 (Other machine learning models: Empirical Risk Minimization (ERM) Framework)

- Spatial Regression problem
- Nonnegative matrix factorization
- Learning a Deep Neural Network model
- A lot of problems we can solve!

Why did I study optimization methods?

- Naive approach: Let f be our objective function and $x \in X$ be constraint. Then investigate f(x) for each $x \in X$ and choose the minimum value of f(x).
- Unfortunately, this method is intractable in practice. Consider $x \in \mathbb{R}^{20}$.

Is it tough to learn and practice?

- If $X = \mathbb{R}^p$ (no constraint), it is surprisingly easy.
- If $X \subsetneq \mathbb{R}^p$, it depends on the problem.

We will deal with

- (1) Unconstrained convex optimization problem.
- (2) Linear constrained convex optimization problem.
- (3) To solve (2) easier, we will learn general optimization methods.

Contents

- 1 Introduction and linear algebra
- 2 Affine set and convex set
- 3 Convex function
- 4 Unconstrained optimization
- 5 Constrained optimization
- 6 Dual problem
- 7 Interior point method
- 8 Midterm

- 9 EM algorithm
- 10 ADMM algorithm
- 11 MCMC algorithm
- 12 Stochastic Algorithm
- 13 Variational Inference
- 14 Convergence
- 15 Final

Let's start our journey to OPTIMIZATION!