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What is the optimization problem? Decision-making under constraints.

Let f : Rp 7→ R and X ⊂ Rp. The optimization problem is typically given by

min
x

f(x)

st. x ∈ X.

Here we denote f as f : x 7→ f(x). We call x a variable, f an objective function, X a feasible
set, and x ∈ X the constraint.
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Example 1 (Regression problem)

Let (yi, xi) ∈ R × Rp for i = 1, · · · , n be response-predictor pairs (constants) and β ∈ Rp be
variable.

L : β 7→ 1

n

n∑
i=1

(yi − x>i β)2.

The solution of the following optimization problem is obtained by solving

min
β

L(β)

st. β ∈ Rp.

The solution is called the OLS (ordinary least squares) estimator. Since the feasible set is the
whole set of Rp, the optimization problem is called an unconstrained optimization problem.
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Example 2 (Logistic regression problem)

Let (yi, xi) ∈ {0, 1} × Rp be given response-predictor pairs and β ∈ Rp.

L : β 7→ − 1

n

n∑
i=1

(
yix
>
i β − log(1 + exp(x>i β)

)
The MLE of the logistic regression model is the solution of the following optimization problem:

min
β

L(β)

st. β ∈ Rp.
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Example 3 (MLE for a general case)

Let y|x ∼ f(y|x; θ) be the conditional density function of y for a given x, where θ ∈ Θ ⊂ Rp
is the parameter of the density function. Let (yi, xi) be a random sample from f(y|x; θ). In our
optimization problem, (yi, xi)s are constants, and θ is a variable.

L : θ 7→ −
n∑
i=1

log f(yi|xi; θ)

The MLE of the unknown θ is given by

min
θ

L(θ)

st. θ ∈ Θ.
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Example 4 (L1-Compressed Sensing)
Let Y ∈ Rm be an original signal vector and X ∈ Rm×n be a filter matrix and β ∈ Rn the
sparse signal.

L : β 7→ ‖β‖1

The L1-Compressed Sensing is the solution to the following problem:

min
β

L(β)

st. β ∈ {β : Y = Xβ}
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Example 5 (Other machine learning models: Empirical Risk Minimization (ERM) Framework)

Spatial Regression problem

Nonnegative matrix factorization

Learning a Deep Neural Network model

A lot of problems we can solve!
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Why did I study optimization methods?

Naive approach: Let f be our objective function and x ∈ X be constraint. Then
investigate f(x) for each x ∈ X and choose the minimum value of f(x).

Unfortunately, this method is intractable in practice. Consider x ∈ R20.
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Is it tough to learn and practice?

If X = Rp (no constraint), it is surprisingly easy.

If X ( Rp, it depends on the problem.
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We will deal with

(1) Unconstrained convex optimization problem.

(2) Linear constrained convex optimization problem.

(3) To solve (2) easier, we will learn general optimization methods.
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Let’s start our journey to OPTIMIZATION!
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