MCMC and Variational inference

Department of Statistics December 2, 2023

University of Seoul

Distribution and random numbers

Generating random number from Binomial distribution

- Bernoulli distribution
- Definition of Binomial distribution

Using uniform distribution, generate numbers from Bernoulli distribution.

Generating random number from Binomial distribution

Let $U \sim [0,1]$ then $\Pr(U \leq p) = p$. That is

 $I(U \le p) =_d \mathsf{Bernoulli}(p)$

- (1) Set X = 0
- (2) Generate $U \sim (0, 1)$
- (3) If U < p then $X \leftarrow X + 1$
- (4) Iterate (2)-(3) *n* times

Inversion method

Let $X \sim F$, $U \sim U[0,1]$ and $X \perp U$, then

 $F^{-1}(U) =_d X$

(proof) $\Pr(F^{-1}(U) \le x) = \Pr(U \le F(x)) = F(x)$. Thus, the CDF of a random variable $F^{-1}(U)$ is F.

Exponential distribution

 $X \sim \exp(\lambda)$

- $F(x) = 1 \exp(-\lambda x)$
- $F^{-1}(u) = -\log(1-u)/\lambda$

Gamma (Erlang) distribution

Let $X \sim \text{Gamma}(n, \beta)$ for $n \in \mathbb{N}$ and $\beta > 0$.

- If $Y_i \sim_{iid} \exp(\beta^{-1})$ for $i = 1, \cdots, n \ X =_d \sum_{i=1}^n Y_i$
- $Y_i \sim \beta \exp(1)$

Normal distribution (Box-Müller method)

The pdf of $X \sim N(0, \sigma^2)$ is

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- $U_1, U_2 \sim U(0, 1)$
- $Z = \sqrt{-2\log U_2}\cos(2\pi U_1) \sim N(0,1)$

(Idea of Box-Müller method)

- Let Z_1 and Z_2 be independent random variables following N(0,1).
- Since this density is radially symmetric, it is natural to consider the polar coordinate random variables (R, θ) , defined by $0 \le \theta < 2\pi$ and $Z_1 = R\cos(\theta)$ and $Z_2 = R\sin(\theta)$.
- Clearly, $\theta \sim U[0, 2\pi] =_d 2\pi U_1$ where $U_1 \sim U(0, 1)$.
- Intuitively, $R \perp \theta$.

(Idea of Box-Müller method)

$$R^{2} = R^{2} \cos(\theta)^{2} + R^{2} \sin(\theta)^{2}$$

= $Z_{1}^{2} + Z_{2}^{2}$
= $_{d} \chi^{2}(2)$
= $_{d}$ Gamma $(1, 2) =_{d} 2 \exp(1)$
= $_{d} -2 \log(1 - U_{2}) =_{d} -2 \log(U_{2})$

where $U_2 \sim U(0,1).$ So, $R =_d \sqrt{-2\log(U_2)}$ Therefore,

$$Z_1 = R\cos\theta =_d \sqrt{-2\log(U_2)}\cos(2\pi U_1).$$

Multivariate normal distribution

Let $\mathbf{X} \sim N_p(0, \Sigma)$ and suppose that Σ is positive definite.

- Find A satisfying $A^2 = \Sigma$
- Generate $y \sim N_p(0, I)$. Note that $y = (y_1, \dots, y_p)$ where $y_i \sim_{iid} N(0, 1)$.
- Obtain x = Ay.

Rejection sampling

Our object is to obtain random samples from f.

- f is density function of X
- g is density function of Y
- Assume that there exists k > 0 such that

 $kg(x) \ge f(x)$

for all x for which f(x) > 0.

Rejection sampling algorithm

- 1. Sample $Y \sim g$
- 2. Sample $U \sim U(0,1)$
- 3. Reject Y if U > kg(y)/f(y), and return to step 1.
- 4. Otherwise, keep the value of Y. Set X = Y and return to step 1.

Proposition 1

Let $X \sim f$ and $Y \sim g$ and assume that there exists k > 0 such that $f(x) \leq kg(x)$ for all $x \in \{x : f(x) > 0\}.$

(proof)

$$\begin{aligned} \Pr(U \le f(Y)/(kg(Y))) &= \int \Pr(U \le f(Y)/(kg(Y))|Y = y)g(y)dy \\ &= \int \frac{f(y)}{kg(y)}g(y)dy = 1/k. \end{aligned}$$

$$\begin{aligned} \Pr(Y \le y, (U \le f(Y)/(kg(Y))) &= \int_{-\infty}^{y} d\Pr(Y = y, (U \le f(Y)/(kg(Y))) \\ &= \int_{-\infty}^{y} g(y) \frac{f(y)}{kg(y)} dy = F(y)/k \end{aligned}$$

Therefore, $\Pr(Y \le y | U \le f(Y) / (kg(Y))) = F(y)$, which completes the proof.

Example 1 (Gamma distribution for $\alpha < 1$)

Let $X \sim \text{Gamma}(\alpha, 1)$ then, $f(x) = \frac{x^{\alpha-1} \exp(-x)}{\Gamma(\alpha)}$

- For $0 < x \le 1$, $f(x) \le x^{\alpha 1} / \Gamma(\alpha)$
- For $x \ge 1$, $f(x) \le \exp(-x)/\Gamma(\alpha)$

From the above relation, we can set

$$e(x) = \begin{cases} x^{\alpha - 1} / \Gamma(\alpha) & 0 < x < 1\\ \exp(-x) / \Gamma(\alpha) & x \ge 1 \end{cases}$$

Let

$$K = \int_0^\infty e(x)dx = (\alpha^{-1} + e^{-1})/\Gamma(\alpha)$$

then $g(x) = K^{-1}e(x)$ is pdf.

The cdf of g(x) is given by

$$G(x) = \begin{cases} \frac{x^{\alpha}}{\Gamma(\alpha)K\alpha} & 0 < x < 1\\ \frac{e^{-1} - e^{-x}}{\Gamma(\alpha)K} + \frac{1}{\Gamma(\alpha)K\alpha} & x \ge 1. \end{cases}$$

We can easily obtain $G^{-1}(u)$.

Figure 1: G(x) and $G^{-1}(x)$

Algorithm

- 1. Sample $Y \sim g$ (inversion method through G^{-1})
- 2. Sample $U \sim U(0,1)$
- 3. Reject Y if U > f(Y)/e(Y), and return to step 1.
- 4. Otherwise, keep the value of Y. Set X = Y and return to step 1.

Example 2 (Gamma distribution for $\alpha > 1$)

Let $X \sim \text{Gamma}(\alpha, 1)$. Let $h(x) = d(1 + cx)^3$, and we consider a generating rs defined by h(X).

The pdf of h(X), f_h , is proportional to

$$\exp(g(x)) = h(x)^{\alpha - 1} \exp(-h(x))h'(x), \quad (x > -1/c)$$

where $g(x) = (\alpha - 1/3) \log(1 + cx)^3 - d(1 + cx)^3 + d$ Let $d = \alpha - 1/3$ and $c = 1/\sqrt{9d}$ then $\exp(g(x)) \le \exp(-x^2/2)$. (continued) Let $f_h(x) = K \exp(g(x))$ then

$$f_h(x) = K \exp(g(x)) \le K \sqrt{2\pi} \phi(x)$$

where
$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

Note that

$$f_h(x)/K\sqrt{2\pi}\phi(x) = \exp(g(x))/(\sqrt{2\pi}\phi(x)).$$

We need not to know the value of K in rejection sampling.

Algorithm

- 1. Sample $Z\sim\phi$
- 2. Sample $U \sim U(0,1)$
- 3. Reject Z if $U > \exp(g(Z)) / \exp(-Z^2/2)$, and return to step 1.
- 4. Otherwise, keep the value of Y. Set Y = Z and return to step 1.

Note that Y = H(X). By inversion of Y, we complete the sampling algorithm.

we may obtain random sample of y = h(X). By letting $x = h^{-1}(y)$, we obtain rs of X.

$$\exp(h(x)) \le \exp(-x^2/2)$$

We let $e(x) = \exp(-x^2/2)$ then

Example 3 (Hit or Miss method)

Our object is to compute

$$I = \int_{a}^{b} g(x) dx$$

for $g(x) \ge 0$.

Assume that $g(x) \in [0, c]$ for all $x \in (a, b)$.

- Set $N_H = 0$
- For $i = 1, \cdots, N$
 - Generate u_i and v_i
 - $x_i = a + u_i(b-a)$
 - If $g(x_i) \ge cv_i$ then $N_H \to N_H + 1$.
- $\hat{I}_H = c(b-a)N_H/N$

- Let p be the probability that a random point falls in S where $S=\{(x,y):y\leq g(x),y\geq 0\}$
- $\hat{p} = N_H/N$
- $N_H \sim bin(N,p)$

We know that

• \hat{I}_H is unbiased estimator for I, since

$$\mathbf{E}\hat{I}_H = c(b-a)\mathbf{E}(\hat{p}) = I$$

•
$$\operatorname{Var}(I_H) = c^2(b-a)^2 \operatorname{Var}(\hat{p}) = I(c(b-a) - I)/N$$

We can compute the confidence interval of \hat{I}_H .

$$\hat{I}_H \pm c(b-a) z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$$

Sample Mean method

Our object is to compute

$$I = \int_{a}^{b} g(x) dx$$

for $g(x) \ge 0$.

Note that

$$I = \int_a^b g(x) dx = \int_a^b \frac{g(x)}{f(x)} f(x) dx$$

That is

$$I = E_X[\frac{g(X)}{f(X)}]$$

Algorithm

- For $i = 1, \cdots, N$
 - $x_i \sim U(a,b)$
 - Compute $g(x_i)$
- $\hat{I}_{SM} = \sum_{i=1}^{N} g(x_i) \frac{1}{(b-a)} / N$

Note that 1/(b-a) is pdf of X.

• $X \sim U(a, b)$ and $I = (b - a) \mathbb{E}(g(X))$

F

• \hat{I}_{SM} is unbiased.

$$E(\hat{I}_{SM}) = (b-a)\frac{1}{N}\sum_{i=1}^{N} Eg(X_i))$$

= $(b-a)\frac{1}{N}\sum_{i=1}^{N}\int_{a}^{b}g(x)\frac{1}{(b-a)}dx = A$

• Var
$$(\hat{I}_{SM}) = \frac{1}{N} \{ (b-a) \int_a^b g(x)^2 dx - I^2 \}$$

Note that $\operatorname{Var}(\hat{I}_{SM}) \leq \operatorname{Var}(\hat{I}_H)$

Discussion

- Both of \hat{I}_{SM} and \hat{I}_{H} is unbiased estimator.
- $\operatorname{Var}(\hat{I}_{SM}) \leq \operatorname{Var}(\hat{I}_{H})$

Then, we conclude that.

Definition 4 (Markov Chain)

Let X_n be a discrete random variable having finite states. $\{X_n\}$ is Markov chain if

$$P(X_n|X_{n-1},\cdots,X_1) = P(X_n|X_{n-1}).$$

Theorem 5

Let x_i for $i = 1, \dots, m$ be a state of X_n and let P be a transition matrix where

$$(P)_{ij} = \Pr(X_{n+1} = x_j | X_n = x_i)$$

If $P \in \mathbb{R}^{m \times m}$ is irreducible then there exists the unique $\pi \in S^{m-1}$ (m-dimensional simplex) such that

 $\pi=\pi P$

(Note: π is a row vector! It is a conventional notation)

Theorem 6

If $P \in \mathbb{R}^{m \times m}$ is irreducible and aperiodic then there exists the unique $\pi \in S^{m-1}$ (*m*-dimensional simplex) such that

$$\lim_{n \to \infty} \pi_0(P^n) = \pi$$

for any $\pi_0 \in \mathcal{S}^{m-1}$.

Definition 7 (Detailed Balance Condition)

Let P_{ij} be the transition prob from the state i to j and π be the state probability. If $\pi_i P_{ij} = \pi_j P_{ji}$ for all i and j we call that the transition probability matrix P satisfies the detailed balance condition wrt π .

Detailed Balance condition and stationary distribution

If P satisfies the detailed balance condition wrt π , then π is the stationary distribution of P under regular conditions.

(why?) $\sum_{i} \pi_i P_{ij} = \sum_{i} \pi_j P_{ji} = \pi_j \sum_{i} P_{ji} = \pi_j$. That is, π is the solution of $\pi P = \pi$.

If we find P satisfying the detailed balance condition, we can generate a random sample following π by restoring samples from $\pi_0(P^n)$ for a large n.

Markov Chain Monte Carlo

Monte Carlo method

• Evaluating

$$E_{\pi}[h(X)] = \int h(x)\pi(x)dx$$

is difficult.

• However, if we can draw independent samples

$$X^{(1)}, X^{(2)}, ..., X^{(n)} \sim \pi(x),$$

then we can approximate

$$E_{\pi}[h(X)] \approx \bar{h}_n = \frac{1}{n} \sum_{t=1}^n h(X^{(t)}).$$

• This is Monte Carlo integration.

• For independent samples, by Law of Large numbers,

$$\bar{h}_n \to E_\pi[h(X)] \tag{1}$$

as $n \to \infty$.

- But, generating independent samples from $\pi(x)$ may be difficult.
- It turns out that (1) still applies if we generate samples using a Markov chain. That is, the sequence $X^{(1)}, X^{(2)}, ..., X^{(n)}$ constitutes a certain Markov chain.
- This is the main idea of MCMC.
- Consider X as θ .

Gibbs sampler

- Let $(X,Y) \sim \pi(x,y)$.
- Generating (X, Y) jointly from $\pi(x, y)$ is difficult.
- However, generating $X|Y = y \sim \pi(x|y)$ and $Y|X = x \sim \pi(y|x)$ is easy. (Note that the conditional probability $\pi(x|y)$ is the transition probability that the state y moves to the state x in the next step)
- Under this situation, the Gibbs sampler is an algorithm to construct a Markov chain whose stationary distribution is π .

Gibbs sampler algorithm

- 1. Initialization: Set $X^{(0)} = x^{(0)}$ and $Y^{(0)} = y^{(0)}$.
- 2. For i = 1 to n,
 - Generate $X^{(i)} \sim \pi(x|y^{(i-1)})$.
 - Generate $Y^{(i)} \sim \pi(y|x^{(i)})$.

- $(X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)}), \dots$ is a Markov chain with stationary distribution $\pi(x, y)$.
- The sample path of the Gibbs sampler will look something like

Example

- Let $Y_i \sim^{i.i.d} N(\mu, \sigma^2)$ and $\pi(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$.
- We had

$$\pi(\mu, \sigma^2 | y) \propto (\frac{1}{\sigma^2})^{n/2+1} \exp\{-\frac{\sum (y_i - \mu)^2}{2\sigma^2}\}$$

- Let $\tau = 1/\sigma^2$. Then, it is easy to derive
 - $\pi(\mu|\sigma^2, y) = N(\bar{y}, \sigma^2/n)$
 - $\pi(\tau|\mu, y) = Gamma(n/2, \sum (y_i \mu)^2/2)$

Let
$$x = (x_1, \cdots, x_d)$$
 and $y = (y_1, \cdots, y_d)$ and let $x \sim_j y$ if $x_i = y_i$ for all $i = j$.

Gibbs sampling and detailed balance condition Markov chain constructed by Gibbs sampling satisfies the detail balance condition wrt π .

(why?)
$$P_{xy} = \frac{1}{d} \frac{\pi(y)}{\sum_{z:z\sim_j x} \pi(z)}$$
 So,

$$\pi(x)P_{xy} = \frac{1}{d} \frac{\pi(x)\pi(y)}{\sum_{z:z\sim_j x} \pi(z)} = \frac{1}{d} \frac{\pi(y)\pi(x)}{\sum_{z:z\sim_j x} \pi(z)} = \pi(y)P_{yx}$$

Gibbs sampler algorithm for general cases

- 1. Initialization: Set $X_1^{(0)} = x_1^{(0)}, ..., X_p^{(0)} = x_p^{(0)}$.
- 2. For i = 1 to n,
 - Generate $X_1^{(i)} \sim \pi(x_1 | x_2^{(i-1)}, ..., x_p^{(i-1)}).$
 - Generate $X_{2}^{(i)} \sim \pi(x_2 | x_1^{(i)}, x_3^{(i-1)}, ..., x_p^{(i-1)}).$
 - Generate $X_3^{(i)} \sim \pi(x_3|x_1^{(i)}, x_2^{(i)}, x_4^{(i-1)}..., x_p^{(i-1)}).$
 -
 - Generate $X_p^{(i)} \sim \pi(x_p | x_1^{(i)}, ..., x_{p-1}^{(i)}).$

Example 8 (Censored data)

- Let $X_i \sim_{i.i.d} \mathsf{Exp}(\lambda)$.
- Observations are $T_i = \min\{X_i, C_i\}$ and $\delta_i = I(X_i \le C_i)$ where C_i 's are censoring times.
- Prior : $\lambda \sim Gamma(\alpha, \beta)$.
- Objective : Obtain the posterior distribution of λ given $(T_1, \delta_1), ..., (T_n, \delta_n)$.

(continue with the example)

• Note that if we observe $X_1, ..., X_n$, we have

$$\pi(\lambda|X_1, ..., X_n) = Gamma(\alpha + n, \beta + \sum_{i=1}^n X_i).$$

- The main idea of the Gibbs sampler is to consider the joint posterior distribution of λ and $(X_1, ..., X_n)$ given the observations.
- That is, the Gibbs sampler generate λ and $(X_1, ..., X_n)$ successively from $\pi(\lambda|X_1, ..., X_n, \text{Data})$ and $\pi(X_1, ..., X_n|\lambda, \text{Data})$.

(continue with the example)

Gibbs sampler algorithm

1. Initialization : $\lambda^{(0)}$ and $X_1^{(0)}, ..., X_n^{(0)}$.

2. For i = 1 to n,

•
$$\lambda^{(i)} \sim Gamma(\alpha + n, \beta + \sum_{k=1}^{n} X_k^{(i-1)}).$$

• $X_1^{(i)}, ..., X_n^{(i)} \sim \prod_{k=1}^{n} \pi(x_k | \lambda^{(i)}, (T_k, \delta_k))$ where
• If $\delta_k = 1, \pi(x_k = T_k | \lambda^{(i)}, (T_k, \delta_k)) = 1,$

• If $\delta_k = 0$, $\pi(x_k | \lambda^{(i)}, (T_k, \delta_k)) = \mathsf{Exp}(\lambda^{(i)}) | x_k \ge T_k$.

Metropolis-Hastings algorithm

- Let $\pi(x)$ be a distribution of \mathbb{R}^k known except possibly for the normalizing constant.
- The aim is to generate $X \sim \pi$.

Metropolis-Hastings algorithm

- 1. Choose a transition function q(y|x) of a certain Markov chain.
- 2. Initialize $x^{(0)}$.
- 3. For i = 1 to n,
 - Generate $\tilde{x} \sim q(x|x^{(i-1)})$.
 - With probability

$$\alpha(x^{(i-1)}, \tilde{x}) = \min\left\{\frac{\pi(\tilde{x})q(x^{(i-1)}|\tilde{x})}{\pi(x^{(i-1)})q(\tilde{x}|x^{(i-1)})}\right\},$$
set $x^{(i)} = \tilde{x}$ (acceptance) else set $x^{(i)} = x^{(i-1)}$ (rejection).

MCMC

Markov chain constructed by MH algorithm has the stationary distribution π

(proof) It suffices to prove that the chain satisfies detailed balance condition wrt $\pi.$

- The normalizing constant in $\pi(x)$ is not required in the MH algorithm since we only need the ratio $\pi(\tilde{x})/\pi(x^{(i-1)})$.
- If $q(y|x) = \pi(y)$, then we obtain independent samples.
- Usually, q is chosen so that $q(\boldsymbol{y}|\boldsymbol{x})$ is easy to sample from.
- Theoretically, any density $q(\cdot|x)$ having the same support as $\pi(\cdot)$ should work. However, the choice of q strongly depends on the problem in hand.

Choice of q

- The basic idea of the MH algorithm is
 - from the current position x, move to y according to $q(y \vert x),$ and
 - we decide to stay at y, roughly speaking, with probability $\pi(y)/\pi(x)$.
- Hence, q(y|x) having more mass when $\pi(y)$ is larger and vice versa is a good candidate.
- Definitely, the best choice of q is $\pi,$ which is impossible.
- The following three methods are popular:
 - Random walk
 - Independence sampler
 - Utilizing π

Choice of q : Random walk

- q(y|x) = f(|y x|).
- Then, y = x + z where $z \sim f(|z|)$ (random walk).
- Possible choices of f include the multivariate normal density and the multivariate t density.
- With this q,

$$\alpha(x,y) = \min\left\{1, \frac{\pi(y)}{\pi(x)}\right\}.$$

Choice of q : Independence sampler

- q(y|x) = f(y).
- Usual choices of f include the multivariate normal density and the multivariate t density.
- Tails of f(y) must be heavier than tails of $\pi(x)$ for good performance.
- Hence, typically, the variance of f is set to be much larger than the (guestimated) variance of $\pi.$
- Be aware: The more similar f is to π , the better the MH algorithm performs.

Choice of q : Utilizing π

- Exploit the known form of π to specify q.
- If π(x) ∝ ψ(x)h(x) where h(x) is an easy-to-generate density and ψ(x) is uniformly bounded. Then, let q(y|x) = h(y).
- Example: Normal-Cauchy model
 - Let $Y_1, ..., Y_n \sim_{i.i.d.} N(\theta, 1)$.
 - $\pi_0(\theta) = \frac{1}{\pi(1+\theta^2)}$.
 - Posterior :

$$\pi(\theta|y) \propto \exp\left(-\frac{\sum_{i=1}^{n}(y_i-\theta)^2}{2}\right) \times \frac{1}{1+\theta^2}$$
$$\propto \exp\left(-\frac{n(\theta-\bar{y})^2}{2}\right) \times \frac{1}{1+\theta^2}.$$

• A possibly good choice for q(y|x) is $N(\bar{y}, \tau/n)$ for some $\tau > 1$.

MH algorithm as an optimization algorithm

- Suppose we want to find the maximum of a given function $\pi(x)$.
- Usual numerical methods such as Newton-Raphson or Gradient descent algorithms fails when $\pi(x)$ is not concave.
- The MH algorithm (with random walk q) can be considered as a randomized optimization algorithm:
 - From x, generate y.
 - If $\pi(y) \ge \pi(x)$, move to y.
 - Even if $\pi(y) < \pi(x)$, move to y with positive probability to avoid being trapped at a local maxima.
- Similar optimization algorithms are simulated annealing, genetic algorithm, ...

Convergence diagnostic

- Must do :
 - Plot the times series for each quantity of interest.
 - Plot the auto-correlation functions.
 - Determine the burn-in period and the step size.
- But, realize that you cannot prove that you have converged using any of those.

Variational inference

Approximate Bayesian Inference

- Latent variable $\boldsymbol{\theta} = (\theta_1, ..., \theta_m),$
- Observations : $\mathbf{x} = (x_1, ..., x_n)$.
- Prior : $p(\theta)$.
- Likelihood : $p(\mathbf{x}|\boldsymbol{\theta})$.
- Posterior :

$$p(\boldsymbol{\theta}|\mathbf{x}) = \frac{p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}}$$

Example : Normal mixture model

$$\begin{split} \pi &= (\pi_1, ..., \pi_K) \quad \sim \quad \mathcal{D}(\beta, ..., \beta), \\ \mu_k &\sim \quad \mathcal{N}(0, \tau^2), \quad \text{for } k = 1, ..., K, \\ z_i &\sim \quad Multinomial(\pi), \quad \text{for } i = 1, ..., n, \\ x_i &\sim \quad \mathcal{N}(\mu_{z_i}, \sigma^2), \quad \text{for } i = 1, ..., n. \end{split}$$

•
$$\boldsymbol{\theta} = (\pi, \boldsymbol{\mu}, \mathbf{z}).$$

• Posterior :

$$p(\boldsymbol{\theta}|\mathbf{x}) = \frac{p(\pi) \prod_{k=1}^{K} p(\mu_k) \prod_{i=1}^{n} p(z_i|\pi) p(x_i|z_i, \boldsymbol{\mu})}{\int_{\pi} p(\pi) \int_{\boldsymbol{\mu}} \prod_{k=1}^{K} p(\mu_k) \prod_{i=1}^{n} \sum_{z_i} p(z_i|\pi) p(x_i|z_i, \boldsymbol{\mu}) d\boldsymbol{\mu} d\pi}$$

Variational inference

- Variational method is to choose ν where the variational distribution $q(\theta|\nu)$ is well-approximated to the posterior distribution $p(\theta|\mathbf{x})$.
- ν : variational parameter
- $q(\boldsymbol{\theta}|\boldsymbol{\nu})$: variational distribution

Kullback-Leibler Divergence

• Similarity measure : Kullback-Leibler(KL) divergence

$$KL(q||p) = E_q \left[\log \frac{q(\boldsymbol{\theta}|\nu)}{p(\boldsymbol{\theta}|\mathbf{x})} \right]$$

- It is not a "distance" since $KL(q||p) \neq KL(p||q)$.
- KL(p||p) = 0.

Evidence Lower Bound(ELBO)

- Minimizing KL(q||p) is equivalent to maximizing ELBO, which will be defined below.
- By Jensen inequality, $f(E[X]) \ge E[f(X)]$ when f is concave.
- Definition of ELBO :

$$\log p(\mathbf{x}) = \log \int p(\mathbf{x}, \boldsymbol{\theta}) d\boldsymbol{\theta}$$

=
$$\log \int \frac{p(\mathbf{x}, \boldsymbol{\theta})}{q(\boldsymbol{\theta}|\nu)} q(\boldsymbol{\theta}|\nu) d\boldsymbol{\theta}$$

=
$$\log \left(E_q \left[\frac{p(\mathbf{x}, \boldsymbol{\theta})}{q(\boldsymbol{\theta}|\nu)} \right] \right)$$

\geq
$$E_q [\log p(\mathbf{x}, \boldsymbol{\theta})] - E_q [\log q(\boldsymbol{\theta}|\nu)] :=$$

• We have to choose the variational distribution where ELBO can be calculated.

L

KL divergence and ELBO

$$KL(q||p) = E_q[\log q(\boldsymbol{\theta}|\nu)] - E_q[\log p(\boldsymbol{\theta}|\mathbf{x})]$$

= $E_q[\log q(\boldsymbol{\theta}|\nu)] - E_q[\log p(\boldsymbol{\theta}, \mathbf{x})] + \log p(\mathbf{x})$
= $-\mathcal{L} + \log p(\mathbf{x})$

• For the variational distribution, assume that all latent variables are independent:

$$q(\boldsymbol{\theta}|\boldsymbol{\nu}) = \prod_{i=1}^{m} q(\theta_j|\boldsymbol{\nu}_j).$$

- In fact, the latent variables are dependent in view of the posterior distribution.
- $p(\mathbf{x}, \boldsymbol{\theta})$ can be decomposed as follows by the property of conditional distribution:

$$p(\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{x})p(\boldsymbol{\theta}_{-k}|\mathbf{x})p(\boldsymbol{\theta}_{k}|\boldsymbol{\theta}_{-k}, \mathbf{x})$$

- We update the variational parameter by the coordinate ascent algorithm.
- For updating ν_k , we write ELBO as follows:

$$\mathcal{L} = \log p(\mathbf{x}) + E_q[\log p(\boldsymbol{\theta}_{-k}|\mathbf{x})] + E_q[\log p(\theta_k|\boldsymbol{\theta}_{-k},\mathbf{x})] - \sum_{j=1}^m E_q[\log q(\theta_j|\nu_j)]$$

• \mathcal{L}_k is defined as the function of ν_k :

$$\begin{aligned} \mathcal{L}_k &:= \quad E_q[\log p(\theta_k | \boldsymbol{\theta}_{-k}, \mathbf{x})] - E_q[\log q(\theta_k | \boldsymbol{\nu}_k)] \\ &= \quad \int q(\theta_k | \boldsymbol{\nu}_k) E_{-k}[\log p(\theta_k | \boldsymbol{\theta}_{-k}, \mathbf{x})] d\theta_k - \int q(\theta_k | \boldsymbol{\nu}_k) \log q(\theta_k | \boldsymbol{\nu}_k) d\theta_k. \end{aligned}$$

where E_{-k} is the expectation with respect to $\prod_{j \neq k} q(\theta_j | \nu_j)$.

• Under $\int q(\theta_k|\nu_k)d\theta_k = 1$, $q^*(\theta_k|\nu_k)$ which maximizes \mathcal{L}_k is as follows:

$$q^*(\theta_k|\nu_k) \propto \exp\{E_{-k}[\log p(\theta_k|\boldsymbol{\theta}_{-k}, \mathbf{x})]\}$$

• Assume that $p(\theta_j|\boldsymbol{\theta}_{-j},\mathbf{x})$ belongs to an exponential family.

$$p(\theta_j | \boldsymbol{\theta}_{-j}, \mathbf{x}) = h(\theta_j) \exp\{\eta(\boldsymbol{\theta}_{-j}, \mathbf{x})^T t(\theta_j) - a(\eta(\boldsymbol{\theta}_{-j}, \mathbf{x}))\}$$

- This assumption is satisfied in many complicated models:
 - Bayesian mixtures of exponential families with conjugate priors
 - Switching Kalman filters
 - Hierarchical HMMs
 - Mixed-membership models of exponential families
 - Factorial mixtures/HMMs of exponential families
 - Bayesian linear regression
- We choose the variational distribution with the same exponential family.

$$q(\theta_j|\nu_j) = h(\theta_j) \exp\{\nu_j^T t(\theta_j) - a(\nu_j)\}$$
$$q(\theta|\nu) = \prod_{j=1}^m q(\theta_j|\nu_j)$$

• We can calculate $E_{-k}[\log p(\theta_k | \boldsymbol{\theta}_{-k}, \mathbf{x})]$ as follows:

$$\log p(\theta_k | \boldsymbol{\theta}_{-k}, \mathbf{x}) = \log h(\theta_k) + \eta(\boldsymbol{\theta}_{-k}, \mathbf{x})^T t(\theta_k) - a(\eta(\boldsymbol{\theta}_{-k}, \mathbf{x}))$$
$$E_{-k}[\log p(\theta_k | \boldsymbol{\theta}_{-k}, \mathbf{x})] = \log h(\theta_k) + E_{-k}[\eta(\boldsymbol{\theta}_{-k}, \mathbf{x})]^T t(\theta_k)$$
$$-E_{-k}[a(\eta(\boldsymbol{\theta}_{-k}, \mathbf{x}))]$$

• We can rewrite $q^*(\theta_k|\nu_k)$ as follows:

$$q^*(\theta_k|\nu_k) \propto h(\theta_k) \exp\{E_{-k}[\eta(\theta_{-k}, \mathbf{x})]^T t(\theta_k)\}$$

$$q^*(\theta_k|\nu_k) = q(\theta_k|\nu_k^*),$$

where

$$\nu_k^* = E_{-k}[\eta(\boldsymbol{\theta}_{-k}, \mathbf{x})]$$

• We update all ν_k^* 's by the above equation until they converge.

Example : Normal mixture model(revisited)

$$\begin{split} \pi &= (\pi_1, ..., \pi_K) \quad \sim \quad \mathcal{D}(\beta, ..., \beta), \\ \mu_k &\sim \quad \mathcal{N}(0, \tau^2), \quad \text{for } k = 1, ..., K, \\ z_i &\sim \quad Multinomial(\pi), \quad \text{for } i = 1, ..., n, \\ x_i &\sim \quad \mathcal{N}(\mu_{z_i}, \sigma^2), \quad \text{for } i = 1, ..., n. \end{split}$$

• We choose the variational distribution as follows:

$$\begin{aligned} \pi &\sim \mathcal{D}(b_1,...,b_K), \\ \mu_k &\sim \mathcal{N}(m_k,s_k^2), \quad \text{for } k=1,...,K, \\ z_i &\sim Multinomial(p_{i1},...,p_{iK}), \quad \text{for } i=1,...,n \end{aligned}$$

Example : Normal mixture model(revisited)

• The variational method iteratively update the below equations until the variational parameters converge.

$$p_{ik}^{*} \propto \exp\left\{\psi(b_{k}) - \psi(b_{1} + \dots + b_{K}) + \frac{x_{i}m_{k}}{\sigma^{2}} - \frac{m_{k}^{2} + s_{k}^{2}}{2\sigma^{2}}\right\},\$$

$$m_{k}^{*} = \frac{\sum_{i=1}^{n} p_{ik}x_{i}}{\frac{\sigma^{2}}{\tau^{2}} + \sum_{i=1}^{n} p_{ik}}, \quad s_{k}^{*2} = \left(\frac{1}{\tau^{2}} + \frac{\sum_{i=1}^{n} p_{ik}}{\sigma^{2}}\right)^{-1},\$$

$$b_{k}^{*} = \beta + \sum_{i=1}^{k} p_{ik}.$$

(It is allowed to use a generating code for only uniform and normal distributions)

- Generalized Extreme distribution
- Gamma distribution $\alpha = 3$, $\beta = 3/2$