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Things to know

basic operation of matrix
e spanning space, null space
e projection and geometry

e linear map and matrix
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Vector and Matrix

in the view of computational perspective
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Notation

e Denote a 2-dimensional data array (n x p matrix) by X.
e Denote the element in the ith row and the jth column of X by z;; or (X);;.
e Denote by X the jth column vector of X.

e Denote the ith data(observation or record) by x; (column vector). Thus,

X:(X1 Xy oo- X,,):
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Multiplication
Let A be n x p matrix, and C be p x m matrix. The AC is n x m matrix, and (AC);; =
> k=1 (A)ir(C)ij-

e ABC+ AB>C = A(By + B2)C

e B1AC + AB>C # A(By + B2)C
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Multiplication of block matrix

Suppose that A;;Bjs are well defined. Then,

A A Bii B
Ay Ago By B

A1 B+ A12Boy A11Bia + A12Boo
A2 By + AsaBoy Ag1Bia + Az Boo
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Transpose Transpose is an operation defined on matrix. We denote the transpose of A by AT.
Image of transpose of n x p matrix is p x n matrix with (AT);; = Aj;

o (AB)T =BTAT
o (A1Ay- Ap)T = Al - AT AT
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Transpose of block matrix

.
An A\ _ [ Al A5
Ag1 Ag Al Aj
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Example

Let X be

X X
Xo1 Xoo )

then X T X is given by

T
X11 X12 Xll X12
X21 X22 X21 X22
_ X1 X1 + Xy X
X;QX11+X2—|—2X21
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_ [ X4 X%
XL X5
X1 X12 + X Xoo
X1T2X12+X2T2X22
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Trace Trace is an operation defined on squared matrix.

tT’:AERpo}—)Z(A)MER
J

tr(A+ B) =tr(A) + tr(B)
tr(kA) = ktr(A) (k is a constant)
Let A € R™"*?P and C € RP*™. Then,

tr(AC) = tr(CA)

tr(ATA) =Y, (A)?

,J ij
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Let x € R? and A € RP*P,

exp(z | Az) = exp(tr(Azx"))?
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(example) x € RP, and let 3 € RP*P,

e exp(—x' Xx) = exp(—tr(x ' Xx))
o exp(—tr(x"(Zx)) = exp(—tr(Zxx ")) = exp(—tr(xx' %))
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Inverse matrix

Let A, B € RP*P_|f
AB=BA=1

then B is inverse of A and we denote B = A~ 1.
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If the inverse matrices exist,

o (AB)"' =p-1A-!
° (AT)fl — (Afl)T
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Schur's lemma*

A B]™' [A'4A7'B(D-CA'B)"lcA™! —AT'B(D-cCcA'B)7!
C D - —(D-cA 'B)"tca! (D-CcA'B)~!

provided that A~ and (D — CA 'B)~" are exist.
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Orthogonal matrix
U € RP*? is orthogonal if UTU =UU T = 1I.
Denote the jth column and ith row of U by U; and u;, respectively. Check that

o U =UL
° UjTUj:Oforjyék:.
° u;ruk:()forj;ék.
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Positive definite matrix A € RP*P. If a" Aa > 0 for all a € R? (a # 0 € RP), then A is

positive definite.

Nonnegative definite matrix If ¢ Aa > 0 for all a € R? (a # 0 € RP), then A is nonnegative
definite.
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lan) Can we measure a certain amount of positive definiteness?
Louise) How about this? max, a" Aa and min, a " Aa.

Louise) Right. For a fixed A, a” Aa can be arbitrary large as (ka) " A(ka) > a' Aa for all k > 1.

(
(
(lan) Hm, reasonable. But, we have to worry about the scaling problem.
(
(lan) It'd be better fix it as max,;|=1 @' Aa and ming, =1 a' Aa
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Note that every covariance matrix is nonnegative definite.

(proof) Let X be a random vector and p = E(X), then ¥ = E(X — 1) T (X — 1) is a covariance
matrix. For all a € RP

a'3a = Ea'(X—p)"(X—pa
= E((X - wa) (X — )
E[|(X — wal* > 0
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Linear equations

Let © = (21, - ,xp) be a variable and a;;s and b;s are constants.
apnnzy+---tapr, = b
21T + -+ -+ F Q2pxp = by

ap1%1 + -+ UnpTp = bn

These n equations are simply written by matrix and vector.

Az =10

where A € R"*P, x € RP and b € R".
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Matrix norms measure the size or magnitude of a matrix. They play a crucial role in numerical
analysis and matrix computations.

Commonly used matrix norms include:

e Operator Norm (Induced Norm)

e Frobenius Norm
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The operator norm (also called the induced norm) of a matrix A € R™*"™ is defined as:

Ax 2
|Allop = su 1Az = sup |Az|2
e#20 [Zll2 xf=1

e Measures how much A stretches a vector.
e Equivalent to the largest singular value (i.e. o1 in SVD) of A.
o Sub-multiplicative: ||[AB|lop < [|A|lop!|Bllop
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The Frobenius norm of a matrix A € R™*" is defined as:

1/2
[AllF = ZZ| )iil?
=1 j=1
Alternatively,
min(m,n) 1/2
JAlr = ATy = [ Y o2

i=1
, where o;s are singular value of A. (See the SVD in LA03.)

e Equivalent to the Euclidean norm of the matrix as a vector.
e Easy to compute and differentiable.

e Unitary invariant: ||[UAV||p = ||A||r for orthogonal matrices U, V (why?)
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