Linear algebra for computational statistics I

Jong-June Jeon

September, 2025

Department of Statistics, University of Seoul

Things to know

- basic operation of matrix
- spanning space, null space
- projection and geometry
- linear map and matrix

Vector and Matrix

in the view of computational perspective

Step 1

계산에서 행렬과 벡터를 사용하는 중요한 이유 중 하나가 간결한 표현이다. 복잡한 식의 형태를 행렬과 벡터를 도입함으로써 간단한 표현 형을 얻을 수 있고, 그것을 이용하여 식의 변형과 계산에 대한 insight를 얻을 수 있다. 여기서는 행렬과 벡터의 기본 연산과 최적화에서 자주 사용되는 간단한 등식에 대해서 배운다.

Notation

- Denote a 2-dimensional data array ($n \times p$ matrix) by X.
- Denote the element in the ith row and the jth column of X by x_{ij} or $(X)_{ij}$.
- Denote by X_i the *j*th column vector of \mathbf{X} .
- Denote the *i*th data(observation or record) by x_i (column vector). Thus,

$$\mathbf{X} = \left(\begin{array}{ccc} X_1 & X_2 & \cdots & X_p \end{array} \right) = \left(\begin{array}{c} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{array} \right).$$

Multiplication

Let **A** be $n \times p$ matrix, and **C** be $p \times m$ matrix. The **AC** is $n \times m$ matrix, and $(\mathbf{AC})_{ij} = \sum_{k=1}^{p} (\mathbf{A})_{ik} (\mathbf{C})_{kj}$.

- $AB_1C + AB_2C = A(B_1 + B_2)C$
- $B_1AC + AB_2C \neq A(B_1 + B_2)C$

Multiplication of block matrix

Suppose that $A_{ij}B_{jk}$ s are well defined. Then,

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

Transpose Transpose is an operation defined on matrix. We denote the transpose of \mathbf{A} by \mathbf{A}^{\top} . Image of transpose of $n \times p$ matrix is $p \times n$ matrix with $(\mathbf{A}^{\top})_{ij} = \mathbf{A}_{ji}$

- \bullet $(AB)^{\top} = B^{\top}A^{\top}$
- $\bullet \ (A_1 A_2 \cdots A_k)^{\top} = A_k^{\top} \cdots A_2^{\top} A_1^{\top}$

Transpose of block matrix

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{\top} = \begin{pmatrix} A_{11}^{\top} & A_{21}^{\top} \\ A_{12}^{\top} & A_{22}^{\top} \end{pmatrix}$$

Example

Let X be

$$\left(\begin{array}{cc} X_{11} & X_{12} \\ X_{21} & X_{22} \end{array}\right),\,$$

then $X^{\top}X$ is given by

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}^{\top} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} = \begin{pmatrix} X_{11}^{\top} & X_{21}^{\top} \\ X_{12}^{\top} & X_{22}^{\top} \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$$

$$= \begin{pmatrix} X_{11}^{\top} X_{11} + X_{21}^{\top} X_{21} & X_{11}^{\top} X_{12} + X_{21}^{\top} X_{22} \\ X_{12}^{\top} X_{11} + X_{22}^{\top} X_{21} & X_{12}^{\top} X_{12} + X_{22}^{\top} X_{22} \end{pmatrix}$$

Trace Trace is an operation defined on squared matrix.

$$tr: A \in \mathbb{R}^{p \times p} \mapsto \sum_{j} (A)_{jj} \in \mathbb{R}$$

• tr(A+B) = tr(A) + tr(B)

- tr(kA) = ktr(A) (k is a constant)
- Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{C} \in \mathbb{R}^{p \times n}$. Then,

$$tr(\mathbf{AC}) = tr(\mathbf{CA})$$

• $tr(A^{\top}A) = \sum_{i,j} (A)_{ij}^2$

Let $x \in \mathbb{R}^p$ and $A \in \mathbb{R}^{p \times p}$.

$$\exp(x^{\top}Ax) = \exp(tr(Axx^{\top}))$$
?

(example) $\mathbf{x} \in \mathbb{R}^p$, and let $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$.

•
$$\exp(-\mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x}) = \exp(-tr(\mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x}))$$

$$\bullet \ \exp(-tr(\mathbf{x}^\top(\mathbf{\Sigma}\mathbf{x})) = \exp(-tr(\mathbf{\Sigma}\mathbf{x}\mathbf{x}^\top)) = \exp(-tr(\mathbf{x}\mathbf{x}^\top\mathbf{\Sigma}))$$

Inverse matrix

Let $A, B \in \mathbb{R}^{p \times p}$. If

$$AB = BA = I$$

then B is inverse of A and we denote $B = A^{-1}$.

If the inverse matrices exist,

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

•
$$(A^{\top})^{-1} = (A^{-1})^{\top}$$

Schur's lemma*

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix},$$

provided that A^{-1} and $(D - CA^{-1}B)^{-1}$ are exist.

Orthogonal matrix

 $U \in \mathbb{R}^{p \times p}$ is orthogonal if $U^{\top}U = UU^{\top} = I$.

Denote the jth column and ith row of U by U_i and \mathbf{u}_i , respectively. Check that

- $U^{\top} = U^{-1}$.
- $U_i^{\top}U_j = 0$ for $j \neq k$.
- $\mathbf{u}_{j}^{\top}\mathbf{u}_{k} = 0$ for $j \neq k$.

Positive definite matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$. If $a^{\top} \mathbf{A} a > 0$ for all $a \in \mathbb{R}^p$ ($a \neq 0 \in \mathbb{R}^p$), then \mathbf{A} is positive definite.

Nonnegative definite matrix If $a^{\top} \mathbf{A} a \geq 0$ for all $a \in \mathbb{R}^p$ ($a \neq 0 \in \mathbb{R}^p$), then \mathbf{A} is nonnegative definite.

- (lan) Can we measure a certain amount of positive definiteness?
- (Louise) How about this? $\max_a a^{\top} A a$ and $\min_a a^{\top} A a$.
- (lan) Hm, reasonable. But, we have to worry about the scaling problem.
- (Louise) Right. For a fixed A, $a^{\top}Aa$ can be arbitrary large as $(ka)^{\top}A(ka) > a^{\top}Aa$ for all k > 1.
- (Ian) It'd be better fix it as $\max_{a:||a||=1} a^{\top} A a$ and $\min_{a:||a||=1} a^{\top} A a$

Note that every covariance matrix is nonnegative definite.

(proof) Let X be a random vector and $\mu = E(X)$, then $\Sigma = \mathbb{E}(X - \mu)^{\top}(X - \mu)$ is a covariance matrix. For all $a \in \mathbb{R}^p$

$$a^{\top} \mathbf{\Sigma} a = \mathbb{E} a^{\top} (\mathbf{X} - \mu)^{\top} (\mathbf{X} - \mu) a$$

 $= \mathbb{E} ((\mathbf{X} - \mu) a)^{\top} ((\mathbf{X} - \mu) a)$
 $= \mathbb{E} \|(\mathbf{X} - \mu) a\|^2 \ge 0$

Linear equations

Let $x=(x_1,\cdots,x_p)$ be a variable and a_{ij} s and b_j s are constants.

$$a_{11}x_1 + \dots + a_{1p}x_p = b_1$$

$$a_{21}x_1 + \dots + a_{2p}x_p = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n1}x_1 + \dots + a_{np}x_p = b_n$$

These n equations are simply written by matrix and vector.

$$Ax = b$$

where $A \in \mathbb{R}^{n \times p}$, $x \in \mathbb{R}^p$ and $b \in \mathbb{R}^n$.

Matrix norms measure the size or magnitude of a matrix. They play a crucial role in numerical analysis and matrix computations.

Commonly used matrix norms include:

- Operator Norm (Induced Norm)
- Frobenius Norm

The operator norm (also called the induced norm) of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as:

$$\|\mathbf{A}\|_{\mathsf{op}} = \sup_{x \neq \mathbf{0}} \frac{\|\mathbf{A}x\|_2}{\|x\|_2} = \sup_{\|\mathbf{x}\|_2 = 1} \|\mathbf{A}x\|_2$$

- Measures how much A stretches a vector.
- Equivalent to the largest singular value (i.e. σ_1 in SVD) of **A**.
- Sub-multiplicative: $\|\mathbf{A}\mathbf{B}\|_{\mathsf{op}} \leq \|\mathbf{A}\|_{\mathsf{op}} \|\mathbf{B}\|_{\mathsf{op}}$

The Frobenius norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as:

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |(A)_{ij}|^2\right)^{1/2}$$

Alternatively,

$$||A||_F = \sqrt{\text{Tr}(A^{\top}A)} = \left(\sum_{i=1}^{\min(m,n)} \sigma_i^2\right)^{1/2}$$

- , where σ_i s are singular value of A. (See the SVD in LA03.)
 - Equivalent to the Euclidean norm of the matrix as a vector.
 - Easy to compute and differentiable.
 - Unitary invariant: $\|\mathbf{U}\mathbf{A}\mathbf{V}\|_F = \|\mathbf{A}\|_F$ for orthogonal matrices \mathbf{U} , \mathbf{V} (why?)