Linear algebra for computational statistics II

Jong-June Jeon

September, 2025

Department of Statistics, University of Seoul

Things to know

- basic operation of matrix
- spanning space, null space
- projection and geometry
- linear map and matrix

Linear space

Linear space and matrix

Step 2

벡터공간은 숫자의 순서열로서 단순히 어떤 숫자들의 모임에 특별한 연산규칙을 정의해놓은 공간이다. 이 벡터공간에 내적을 정의하게 되면 벡터공간의 원소들을 각도를 가진 원소로 이해할 수 있다. 내적 공간의 원소로써 이 벡터들을 다루게 되면 앞서 정의한 벡터의 연산 과정을 시각화하여 더 깊은 이해를 얻을 수 있다. 행렬은 벡터공간에서 정의된 선형변환(함수)이라는 사실을 이용하여 행렬을 통해 변화된 결과에 대한 더 높은 수준의 직관을 얻을 수 있다.

Vector space Let \mathbb{F} be a field. A **vector space** V over \mathbb{F} is a set equipped with two operations:

- Vector addition: $+: V \times V \to V$
- Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$
- operation rule (addition, scalar multiplication, ...)
 - (Associativity of addition) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
 - (Commutativity of addition) u + v = v + u
 - (Compatibility of scalar multiplication with field multiplication) $a(b\mathbf{v}) = (ab)\mathbf{v}$
 - (Distributivity of scalar multiplication over vector addition) $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
 - (Distributivity of scalar multiplication over field addition) $(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$
- completeness of elements : (identity and inverse)
 - (Additive identity) There exists a vector $\mathbf{0} \in V$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in V$
 - (Additive inverse) For every $\mathbf{v} \in V$, there exists $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
 - (Identity element of scalar multiplication) $1 \cdot \mathbf{v} = \mathbf{v}$, where $1 \in \mathbb{F}$ is the multiplicative identity

Vector space: example

- \mathbb{R}^n is vector space?
- The set of $\mathbb{R}^{p \times p}$ is vector space?

Before answering the above question, check the operation rules and elements of identity in your vector space.

Let A be $m \times n$ matrix and x be n matrix (n dimensional column vector).

- Write an example of A and x and compute Ax. Where does the result lie on?
- Choose an other x' and compute Ax'.
- Choose two constant a and b and compute A(ax) and A(bx') and A(ax) + A(bx').
- Compute A(ax + bx').

- Write an example of A and x and compute Ax. Where does the result lie on? A moves $x \in \mathbb{R}^n$ on $Ax \in \mathbb{R}^m$.
- Choose an other x' and compute Ax'. A also moves $x' \in \mathbb{R}^n$ on $Ax' \in \mathbb{R}^m$.
- Choose two constant a and b and compute A(ax) and A(bx') and A(ax) + A(bx').
- Compute A(ax + bx').

Note that A(ax) + A(bx') = A(ax + bx'), which implies that A moves elements in \mathbb{R}^n to \mathbb{R}^n with satisfying an special property.

Definition: Linear map

Let V and W be vector spaces and let \mathcal{L} be map from V to W.

- $\mathcal{L}(x+y) = \mathcal{L}(x) + \mathcal{L}(y)$ for all $x, y \in V$
- $\mathcal{L}(cx) = c\mathcal{L}(x)$ for a scalar c.

Matrix and linear map

Let \mathcal{V} and \mathcal{W} be vector spaces, and consider a linear map \mathcal{L} from \mathcal{V} to \mathcal{W} . In particular, let $\mathcal{V} = \mathbb{R}^p$ and $\mathcal{W} = \mathbb{R}^n$, then $\mathcal{L}(\mathbf{0}) = \mathbf{0}$, and

$$\mathcal{L}(ax + bx') = a\mathcal{L}(x) + b\mathcal{L}(x')$$

for all $x, x' \in \mathbb{R}^p$ and all $a, b \in \mathbb{R}$.

Thus, $n \times p$ matrix can be regarded as a linear map. Moreover, we can consider one-to-one correspondence between linear map and matrix.

Matrix and linear map

• Matrix addition: let A and B be $n \times p$ matrix, and denote the corresponding linear map by \mathcal{L}_A and \mathcal{L}_B . A+B is also $n \times p$ matrix and \mathcal{L}_{A+B} be the correspondent linear map to A+B. Then, $\mathcal{L}_{A+B}=\mathcal{L}_A+\mathcal{L}_B$.

$$(A+B)x = Ax + Bx$$

Matrix and linear map

• Matrix multiplication: let A and B be $n \times k$ and $k \times p$ matrix, and denote the corresponding linear map by \mathcal{L}_A and \mathcal{L}_B . AB is $n \times p$ matrix and \mathcal{L}_{AB} be the correspondent linear map to AB. Then, $\mathcal{L}_{AB} = \mathcal{L}_A \circ \mathcal{L}_B$ (Composition of functions: 합성함수)

$$x \mapsto Ax \mapsto B(Ax)$$

 $W \in \mathbb{R}^{n \times p}$ if and only if $W : \mathbb{R}^p \mapsto \mathbb{R}^n$ is linear.

- When n is called a (linear) encoder (압축).
- When n > p W is called a (linear) decoder (해제).

Let
$$W = [W_1, \cdots, W_p] \in \mathbb{R}^{n \times p}$$
 and $a = (a_1, \cdots, a_p)^{\top} \in \mathbb{R}^p$.

$$W(a) = a_1 W_1 + \dots + a_p W_p \in \mathbb{R}^n$$

W(a) is the image of W or the range of \mathcal{L}_W . Note that W(a) is a linear combination of column vectors of W. Suppose that we gather all elements of W(a) when n > p. This recovers \mathbb{R}^n ? Or when n < p this always recovers \mathbb{R}^n ?.

Spanned column space

• Spanned column space of W is the range of W or \mathcal{L}_W .

$$C(W) = \{ \sum_{j=1}^{p} a_j W_j \in \mathbb{R}^n : a_j \in \mathbb{R}, 1 \le j \le p \}$$

- It is clear that $C(W) \subset \mathbb{R}^n$.
- When n > p, how much rich $\mathcal{C}(W)$ is? (the dimension of $\mathcal{C}(W)$)

linear independence

Let V be vector space. A linear independence or linear relation among vectors $w_1, ..., w_n \in V$ is $a_1w_1 + \cdots + a_nw_n = \mathbf{0}$ implies that all a_k s are zero.

dimension of vector space V

Let V be vector space and $v_1,...,v_k \in V$. The dimension of V is the maximum number of k where $v_1,...,v_k$ are linearly independent.

dimension of vector space $\mathcal{C}(W)$

The dimension of $\mathcal{C}(W)$ is the maximum number of k where $W_1,...,W_k$ are linearly independent. The dimension of $\mathcal{C}(W)$ is called of the (column) rank of W rank(W). It is known that

$$rank(W) = rank(W^{\top})$$

Basis of V

If $w_1,...,w_n \in V$ are linearly independent, and $\mathcal{C}([w_1,...,w_n]) = V$, then $w_1,...,w_n$ is called a basis of V. Here n is the dimension of V denoted by $\dim(V)$.

• Null space of $W \in \mathbb{R}^{n \times p}$:

$$\mathcal{N}(W) = \{ a \in \mathbb{R}^p : Wa = 0 \}$$

Dimensionality Theorem

$$dim(\mathcal{C}(W)) + dim(\mathcal{N}(W)) = p$$

When $dim(\mathcal{C}(W)) = p$, W is called full-column rank.

Basis of \mathbb{R}^n

If $w_1, ..., w_n \in \mathbb{R}^n$ are linearly independent, then the set $\{w_1, ..., w_n\}$ is called a basis of \mathbb{R}^n . Note that basis is not unique.

Basis of \mathbb{R}^n

Recall that $W \in \mathbb{R}^{n \times p}$ is a linear map

$$\mathcal{L}: a \in \mathbb{R}^p \mapsto Wa \in \mathbb{R}^n$$

We have seen that $\mathcal{C}(W)$ is the range of the \mathcal{L} and the richness of the space is measured by $dim(\mathcal{C}(W))$, the column rank of W.

Matrix and linear map*

- Let $\{v_1, \dots, v_p\}$ be ordered basis of \mathbb{R}^p and $w_1, \dots, w_p \in \mathbb{R}^n$. Then, there exists \mathcal{L} such that it is the unique linear map from \mathbb{R}^p to \mathbb{R}^n and $\mathcal{L}(v_j) = w_j$. (The image of the basis in \mathbb{R}^p uniquely determines the corresponding linear map.)
- (Matrix representation) Let $\{v_1,\cdots,v_p\}$ and \mathbb{R}^p and $\{w_1,\cdots,w_n\}\in\mathbb{R}^n$ be basis of \mathbb{R}^p and \mathbb{R}^n . A linear map \mathcal{L} is completely characterized by p elements, r_j . Moreover r_j 's are uniquely represented by $\{w_1,\cdots,w_n\}$. That is, $\mathcal{L}(v_j)=r_j=\sum_{i=1}^n a_{ij}w_i$ for $j=1,\cdots,p$. That is, the matrix (a_{ij}) is the representation of the linear map \mathcal{L} with the basis $\{v_1,\cdots,v_p\}$ and $\{w_1,\cdots,w_n\}$.

Useful linear map

- Identity linear map: identity matrix
- Elementary operations:
 - Let $e_j \in \mathbb{R}^p$ is a unit column vector where the jth element is 1 and $\pi = (\pi_1, \cdots, \pi_n)$ is a permutation of $(1, \cdots, p)$, where $\pi_j \in \{1, \cdots, p\}$ for $j = 1, \cdots, n$. Then, $E_{\pi} = (e_{\pi_1}, \cdots, e_{\pi_n})' \in \mathbb{R}^n \times \mathbb{R}^p$ is a linear map that rearranges the elements according to π .

$$E_{\pi} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad x = (x_1, x_2, x_3)',$$

then $E_{\pi}x = (x_3, x_1, x_2)'$

Useful linear map*

- Elementary operations:
 - Let n=p and $E_{\pi}=(0,\cdots,0,e_{\pi_k},0,\cdots,0)'\in\mathbb{R}^n\times\mathbb{R}^p$. What is this operation $I+aE_{\pi}$ with $a\in\mathbb{R}$?
 - Suppose that $E_{\pi}X$ is well defined, then what is the operational meaning of the E_{π} ?
 - Suppose that XE'_{π} is well defined, the what is the operational meaning of E'_{π} ?