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Things to know

• basic operation of matrix

• spanning space, null space

• projection and geometry

• linear map and matrix
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Linear space

Linear space and matrix
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Step 2

벡터공간은 숫자의 순서열로서 단순히 어떤 숫자들의 모임에 특별한 연산규칙을 정의해놓은 공간이다. 이 벡터공간에 내적을 정의하게

되면 벡터공간의 원소들을 각도를 가진 원소로 이해할 수 있다. 내적 공간의 원소로써 이 벡터들을 다루게 되면 앞서 정의한 벡터의

연산 과정을 시각화하여 더 깊은 이해를 얻을 수 있다. 행렬은 벡터공간에서 정의된 선형변환(함수)이라는 사실을 이용하여 행렬을 통해

변환된 결과에 대한 더 높은 수준의 직관을 얻을 수 있다.
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Vector space Let F be a field. A vector space V over F is a set equipped with two operations:

• Vector addition: + : V × V → V

• Scalar multiplication: · : F× V → V

• operation rule (addition, scalar multiplication, ...)

• (Associativity of addition) (u+ v) +w = u+ (v +w)

• (Commutativity of addition) u+ v = v + u

• (Compatibility of scalar multiplication with field multiplication) a(bv) = (ab)v

• (Distributivity of scalar multiplication over vector addition) a(u+ v) = au+ av

• (Distributivity of scalar multiplication over field addition) (a+ b)v = av + bv

• completeness of elements : (identity and inverse)

• (Additive identity) There exists a vector 0 ∈ V such that v + 0 = v for all v ∈ V
• (Additive inverse) For every v ∈ V , there exists −v ∈ V such that v + (−v) = 0

• (Identity element of scalar multiplication) 1 ·v = v, where 1 ∈ F is the multiplicative identity
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Vector space: example

• Rn is vector space?

• The set of Rp×p is vector space?

Before answering the above question, check the operation rules and elements of identity in your

vector space.
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Let A be m× n matrix and x be n matrix (n dimensional column vector).

• Write an example of A and x and compute Ax. Where does the result lie on?

• Choose an other x′ and compute Ax′.

• Choose two constant a and b and compute A(ax) and A(bx′) and A(ax) +A(bx′).

• Compute A(ax+ bx′).

Department of Statistics, University of Seoul Linear algebra for computational statistics II 7 / 24



• Write an example of A and x and compute Ax. Where does the result lie on?

A moves x ∈ Rn on Ax ∈ Rm.

• Choose an other x′ and compute Ax′.

A also moves x′ ∈ Rn on Ax′ ∈ Rm.

• Choose two constant a and b and compute A(ax) and A(bx′) and A(ax) +A(bx′).

• Compute A(ax+ bx′).

Note that A(ax) + A(bx′) = A(ax + bx′), which implies that A moves elements in Rn to Rn

with satisfying an special property.
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Definition: Linear map

Let V and W be vector spaces and let L be map from V to W .

• L(x+ y) = L(x) + L(y) for all x, y ∈ V

• L(cx) = cL(x) for a scalar c.
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Matrix and linear map

Let V and W be vector spaces, and consider a linear map L from V to W. In particular, let

V = Rp and W = Rn, then L(0) = 0, and

L(ax+ bx′) = aL(x) + bL(x′)

for all x, x′ ∈ Rp and all a, b ∈ R.

Thus, n × p matrix can be regarded as a linear map. Moreover, we can consider one-to-one

correspondence between linear map and matrix.
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Matrix and linear map

• Matrix addition: let A and B be n× p matrix, and denote the corresponding linear map by

LA and LB . A+B is also n× p matrix and LA+B be the correspondent linear map to

A+B. Then, LA+B = LA + LB .

(A+B)x = Ax+Bx
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Matrix and linear map

• Matrix multiplication: let A and B be n× k and k × p matrix, and denote the

corresponding linear map by LA and LB . AB is n× p matrix and LAB be the

correspondent linear map to AB. Then, LAB = LA ◦ LB (Composition of functions:

합성함수)

x 7→ Ax 7→ B(Ax)
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W ∈ Rn×p if and only if W : Rp 7→ Rn is linear.

• When n < p W is called a (linear) encoder (압축).

• When n > p W is called a (linear) decoder (해제).
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Let W = [W1, · · · ,Wp] ∈ Rn×p and a = (a1, · · · , ap)> ∈ Rp.

W (a) = a1W1 + · · ·+ apWp ∈ Rn

W (a) is the image of W or the range of LW . Note that W (a) is a linear combination of column

vectors of W . Suppose that we gather all elements of W (a) when n > p. This recovers Rn? Or

when n ≤ p this always recovers Rn?.
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Spanned column space

• Spanned column space of W is the range of W or LW .

C(W ) = {
p∑
j=1

ajWj ∈ Rn : aj ∈ R, 1 ≤ j ≤ p}

• It is clear that C(W ) ⊂ Rn.

• When n > p, how much rich C(W ) is? ( the dimension of C(W ))
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linear independence

Let V be vector space. A linear independence or linear relation among vectors w1, ..., wn ∈ V is

a1w1 + · · ·+ anwn = 0 implies that all aks are zero.

Department of Statistics, University of Seoul Linear algebra for computational statistics II 16 / 24



dimension of vector space V

Let V be vector space and v1, ..., vk ∈ V . The dimension of V is the maximum number of k

where v1, ..., vk are linearly independent.

dimension of vector space C(W )

The dimension of C(W ) is the maximum number of k where W1, ...,Wk are linearly independent.

The dimension of C(W ) is called of the (column) rank of W rank(W ). It is known that

rank(W ) = rank(W>)
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Basis of V

If w1, ..., wn ∈ V are linearly independent, and C([w1, ..., wn]) = V , then w1, ..., wn is called a

basis of V. Here n is the dimension of V denoted by dim(V ).
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• Null space of W ∈ Rn×p:

N (W ) = {a ∈ Rp : Wa = 0}

Dimensionality Theorem

dim(C(W )) + dim(N (W )) = p

When dim(C(W )) = p, W is called full-column rank.
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Basis of Rn

If w1, ..., wn ∈ Rn are linearly independent, then the set {w1, ..., wn} is called a basis of Rn.

Note that basis is not unique.
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Basis of Rn

Recall that W ∈ Rn×p is a linear map

L : a ∈ Rp 7→Wa ∈ Rn

We have seen that C(W ) is the range of the L and the richness of the space is measured by

dim(C(W )), the column rank of W .
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Matrix and linear map∗

• Let {v1, · · · , vp} be ordered basis of Rp and w1, · · · , wp ∈ Rn. Then, there exists L such

that it is the unique linear map from Rp to Rn and L(vj) = wj . (The image of the basis

in Rp uniquely determines the corresponding linear map.)

• (Matrix representation) Let {v1, · · · , vp} and Rp and {w1, · · · , wn} ∈ Rn be basis of Rp

and Rn. A linear map L is completely characterized by p elements, rj . Moreover rj ’s are

uniquely represented by {w1, · · · , wn}. That is, L(vj) = rj =
∑n
i=1 aijwi for

j = 1, · · · , p. That is, the matrix (aij) is the representation of the linear map L with the

basis {v1, · · · , vp} and {w1, · · · , wn}.
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Useful linear map

• Identity linear map: identity matrix

• Elementary operations:

• Let ej ∈ Rp is a unit column vector where the jth element is 1 and π = (π1, · · · , πn) is a

permutation of (1, · · · , p), where πj ∈ {1, · · · , p} for j = 1, · · · , n. Then,

Eπ = (eπ1 , · · · , eπn)
′ ∈ Rn×Rp is a linear map that rearranges the elements according to π.

Eπ =

 0 0 1

1 0 0

0 1 0

 x = (x1, x2, x3)
′,

then Eπx = (x3, x1, x2)
′
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Useful linear map∗

• Elementary operations:

• Let n = p and Eπ = (0, · · · , 0, eπk , 0, · · · , 0)
′ ∈ Rn × Rp. What is this operation I + aEπ

with a ∈ R?
• Suppose that EπX is well defined, then what is the operational meaning of the Eπ?

• Suppose that XE′
π is well defined, the what is the operational meaning of E′

π?
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