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Things to know

basic operation of matrix
e spanning space, null space
e projection and geometry

e linear map and matrix
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Linear space

Linear space and matrix
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Vector space Let F be a field. A vector space V over F is a set equipped with two operations:

e Vector addition: +: V xV =V

e Scalar multiplication: - : F xV — V

e operation rule (addition, scalar multiplication, ...)
e (Associativity of addition) (u+v)+w=u+ (v+w)

e (Commutativity of addition) u+v =v+u
e (Compatibility of scalar multiplication with field multiplication) a(bv) = (ab)v
o (Distributivity of scalar multiplication over vector addition) a(u + v) = au + av

e (Distributivity of scalar multiplication over field addition) (a + b)v = av + bv
e completeness of elements : (identity and inverse)

o (Additive identity) There exists a vector 0 € V such that v+0 = v forall v e V
e (Additive inverse) For every v € V, there exists —v € V such that v+ (—v) =0
o (ldentity element of scalar multiplication) 1-v = v, where 1 € F is the multiplicative identity
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Vector space: example

e R" is vector space?

e The set of RP*P is vector space?

Before answering the above question, check the operation rules and elements of identity in your
vector space.
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Let A be m x n matrix and « be n matrix (n dimensional column vector).

e Write an example of A and x and compute Ax. Where does the result lie on?
e Choose an other 2/ and compute Az’.

e Choose two constant a and b and compute A(ax) and A(bz’) and A(az) + A(bz’).
e Compute A(ax + ba').
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e Write an example of A and x and compute Axz. Where does the result lie on?
A moves z € R" on Az € R™.

e Choose an other 2’ and compute Az’.
A also moves 2’ € R"™ on Az’ € R™.

e Choose two constant a and b and compute A(ax) and A(bz') and A(ax) + A(bz').
e Compute A(ax + bz').

Note that A(ax) + A(bz") = A(ax + bzx’), which implies that A moves elements in R" to R"
with satisfying an special property.
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Definition: Linear map

Let V and W be vector spaces and let £ be map from V' to W.

o L(z+y)=L(x)+ L(y) forall z,y € V

o L(cx) = cL(x) for a scalar c.
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Matrix and linear map

Let V and W be vector spaces, and consider a linear map £ from V to W. In particular, let
YV =RP and W = R", then £(0) = 0, and

L(az +bz') = aLl(z) + bL(x)

for all z,2’ € R? and all a,b € R.

Thus, n X p matrix can be regarded as a linear map. Moreover, we can consider one-to-one
correspondence between linear map and matrix.
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Matrix and linear map

e Matrix addition: let A and B be n X p matrix, and denote the corresponding linear map by
L4 and Lg. A+ Bis also n x p matrix and £ 44 p be the correspondent linear map to
A+ B. Then, Layp=La+LB.

(A+ B)x = Az + Bz
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Matrix and linear map

e Matrix multiplication: let A and B be n x k and k X p matrix, and denote the
corresponding linear map by £4 and Lp. AB is n X p matrix and L4 p be the

correspondent linear map to AB. Then, Lap = L4 o L (Composition of functions:

BB

x — Az — B(Ax)
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W € R™P if and only if W : R? +— R" is linear.

e When n < p W is called a (linear) encoder (2%).
e When n > p W is called a (linear) decoder (SHA]).
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Let W = Wy, -, W,] € R"*P and a = (a1, - ,a,)" € RP.

W(a) =aWy+---+a,W, €R"

W (a) is the image of W or the range of L. Note that W (a) is a linear combination of column
vectors of WW. Suppose that we gather all elements of W (a) when n > p. This recovers R"? Or
when n < p this always recovers R"?.
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Spanned column space
e Spanned column space of W is the range of W or Lyy.
P
C(W) = {Zajo e R™: aj; € R, 1<y Sp}
j=1

e It is clear that C(IW) C R™.
e When n > p, how much rich C(W) is? ( the dimension of C(1V))
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linear independence

Let V' be vector space. A linear independence or linear relation among vectors w1, ..., w, € V is
ajwy + - -+ + ay,w, = 0 implies that all axs are zero.

Department of Statistics, University of Seoul Linear algebra for computational statistics Il 16 /24



dimension of vector space V'

Let V be vector space and vy,...,v; € V. The dimension of V is the maximum number of k
where vy, ..., v are linearly independent.

dimension of vector space C(W)

The dimension of C(WV) is the maximum number of k& where W7, ..., W}, are linearly independent.
The dimension of C(WV) is called of the (column) rank of W rank(W). It is known that

rank(W) = rank(WT)
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Basis of V

If wy,...,w, €V are linearly independent, and C([wy, ..., w,]) =V, then w, ..., w, is called a
basis of V. Here n is the dimension of V' denoted by dim(V').
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e Null space of W € R"*P:

NW)={aeRP: Wa=0}

Dimensionality Theorem
dim(C(W)) + dim(N(W)) =p

When dim(C(W)) = p, W is called full-column rank.
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Basis of R™

If wy,...,w, € R™ are linearly independent, then the set {wy,...,w,} is called a basis of R™.
Note that basis is not unique.
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Basis of R™

Recall that W € R™*? is a linear map
L:aeRP— WaeR"

We have seen that C(WW) is the range of the £ and the richness of the space is measured by
dim(C(W)), the column rank of W.
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Matrix and linear map*

o Let {v1,---,v,} be ordered basis of R? and wy, - -+ ,w, € R™. Then, there exists £ such
that it is the unique linear map from R? to R™ and £(v;) = w;. (The image of the basis
in R? uniquely determines the corresponding linear map.)

e (Matrix representation) Let {vi,--- ,v,} and R? and {w,--- ,w,} € R™ be basis of R?
and R™. A linear map L is completely characterized by p elements, ;. Moreover r;'s are
uniquely represented by {w1,- -+ ,w,}. Thatis, L(v;) =r; = > azjw; for
j=1,---,p. Thatis, the matrix (a;;) is the representation of the linear map £ with the

basis {v1, -+ ,vp} and {w1, - ,wy,}.
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Useful linear map

e Identity linear map: identity matrix

e Elementary operations:

e Let e; € R? is a unit column vector where the jth element is 1 and 7 = (71, -+ ,7,) is a
permutation of (1,---,p), where w; € {1,--- ,p} for j =1,--- ,n. Then,
E: = (ery,  * ,ex,) € R" xR” is a linear map that rearranges the elements according to 7.
0 0 1
E.=]1 1 0 0 x = (r1,12,73),
01 0

then E oz = (z3, 21, 22)
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Useful linear map*

e Elementary operations:
e letn=pand E-=(0,---,0,ex,,0,---,0) € R" x R?. What is this operation I + aF
with a € R?
e Suppose that E; X is well defined, then what is the operational meaning of the E7?
e Suppose that X E. is well defined, the what is the operational meaning of E.?
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