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Things to know

• basic operation of matrix

• spanning space, null space

• projection and geometry

• linear map and matrix
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Decomposition of matrix

Decomposition of linear maps
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Step 3
행렬이 대응시키는 변환을 분해하는 과정을 소개한다. 먼저 내적을 도입하여, 벡터공간 위에서 거리와 각도가 자연스럽게 정의되는

과정을 살펴본다. 다음으로 대칭인 반양정치행렬의 분해를 특별한 직교 선형변환의 분해로 이해할 수 있으며, 이를 통해 행렬의 대

응을 분해하여 해석한다. 여기서는 내적공간(inner product space)와 정사형(projection), Spectral Decomposition, Singular Value

Decomposition을 배운다.
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Inner product An inner product space is a vector space V with an inner product:

〈·, ·〉 : V × V → R

that satisfies the following three properties for all vectors x, y, z ∈ V and all scalars a ∈ R.

• Symmetry: 〈x, y〉 = 〈y, x〉
• Linearity:

〈ax, y〉 = a〈x, y〉
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• Positive-definite: 〈x, x〉 > 0, x ∈ V − {0}
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example

Suppose that a, b ∈ Rp

• Let 〈a, b〉 = a>b. Then the 〈·, ·〉 is inner product?

• Let H ∈ Rp×p is symmetric and 〈a, b〉 = a>Hb. Then the 〈·, ·〉 is inner product?

• If H is positive definite, ...
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(NOTE) Vector space에는 Addition과 scalar multiplication 연산만 정의되어 있다. Vector space 위에 inner production 연산을 정

의해놓으면, Vector space 위에 각도를 정의할 수 있다. 한편 inner production 연산이 주어지면 원소의 길이(norm) 혹은 두 원소간의

거리 (distance)를 정의할 수 있다.

• For x, y ∈ V define 〈x, y〉 = x>y. If x>y = 0 we write x ⊥ y
• We define the norm of x ∈ V by ‖x‖ =

√
x>x

• We can define the distance between x and y by d(x, y) = ‖x− y‖

Hereafter, we use the above definition of the inner product and the norm in our vector space V .
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angle and inner product (law of cosine)

• Let a point A,B,C in R2 and C is the origin and B is a point on x-axis.

• Let the length of AB, BC and CA be c, a, and b, respectively.

• Let the angle ∠C be θ.

• The point A is (b cos θ, b sin θ), and the point B = (a, 0). Thus,

c2 = (b cos θ − a)2 + b2 sin2 θ

= a2 + b2 − 2ab cos θ
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angle and inner product

Because the law of cosine is the fact derived only from geometry, we can apply the law of cosine

to a Euclidean space.

Consider a vector u, v, and u−v and denote the norms of the vectors by ‖u‖, ‖v‖, and ‖u−v‖,
respectively. Note that ‖u‖, ‖v‖, and ‖u− v‖ correspond to b, a, and c. By the law of cosine

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(θ),

which reduces to

u>v = ‖u‖‖v‖ cos(θ).

As a result the angle in Rp are defined by the law of cosine.
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angle and inner product Thus,

• cos(θ) = u>v/(‖u‖‖v‖)
• u>v = 0 is regarded as u ⊥ v

ch) Let u and v be points on a unit sphere and let d be a Euclidean distance between u and v.

Then,

u>v = cos(θ) = 1− 1

2
d2.

The equation shows the relationships of inner product, cosine similarity, and distance.
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angle and inner product
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Projection

Suppose that V is an inner product vector space. Let x, y ∈ V then there exists ŷ ∈ C(x) such

that (y − ŷ) ⊥ x. That is y is decomposed into y = ŷ + (y − ŷ) with ŷ ⊥ (y − ŷ).
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Transpose and projection (figure will be corrected!)

Figure 1: Illustration of projection via transpose operation

y = ax+ (y − ax) with a = y>x/‖x‖2 ∈ R
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Projection Let y, x1, · · · , xk ∈ V and suppose that x1, · · · , xk are linearly independent. Consider

X = [x1, · · · , xk] and C(X). Then, how can we find ŷ ∈ C(X) such that

y = ŷ + (y − ŷ)

satisfying ŷ ⊥ (y − ŷ)?

The answer is the Projection map (matrix)!
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Orthogonal Projection Let x, y ∈ Rp and consider Π, a linear map from Rp to Rp. The projection

map of y onto C(x) satisfies the following properties:

• Πy ∈ C(x);

• (Πy)>y = y>(Πy) = 0;

• Π(Πy) = Πy
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Orthogonal Projection

Orthogonal projection is a linear map defined by Π : V 7→ V (in fact, we can understand the P

as a matrix) such that Π = Π2 = Π>.

• Let Π = x(x>x)−1x> then Π = Π2 = Π>?

• Πy ∈ C(x) for x ∈ V ?

• 〈Πy, y −Πy〉 = 0?

You can conclude that the Π is the orthogonal projection operator (onto C(x)).
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Orthogonal Projection

• Let x, y ∈ Rn and compute the projection of y onto C(x). Then, it is given by

(x(x>x)−1x>)y. Show that x(x>x)−1x> is a projection operator.

• Let X ∈ Rn×m and y ∈ Rn. Compute the projection of y onto C(X).

• Write an example and confirm the result numerically.
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잠깐!

회귀모형의 OLS를 돌이켜보자. Response vector Y ∈ Rn과 predictor matrix X ∈ Rn×p 일때, OLS를 이용한 Y값의 추정량은

Ŷ = X(X
>
X)
−1
X
>
Y ∈ R

로 주어진다. 여기서 X(X>X)−1X>가 C(X)에 Projection operator 고 Ŷ ∈∈ C(X) 이며 (Y − Ŷ ) ⊥ Ŷ임을 알 수 있다.

Projection은 벡터 성분을 직교분해할 때 흔히 볼 수 있었던 연산이다.
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Basic on undergraduate levels

• Symmetric Matrix

• Orthogonal Matrix
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Orthogonal matrix

• Orthogonal matrix E: a square matrix satisfying

E = [e1, · · · , ep],

where e>j ek = 0 for j 6= k and ‖ej‖ = 1 for all j.

• It is easily shown that E>E = I.

• Because E(E>E) = E, EE> = I.

That is, E>E = EE> = I, and E> is the inverse of E.
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Orthogonal matrix (Isometric transformation)

Let E ∈ Rp×p be orthogonal matrix and x, y ∈ Rp. d(x, y) = d(Ex,Ey)?

d(x, y)2 = (x− y)>(x− y) = (x− y)>E>E(x− y)

= ‖E(x− y)‖2 = d(Ex,Ey)2

The map LE preserves the distance (isometric). Actually, E is understood as the rotation map.
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Orthogonal matrix (Rotation)

What is the geometrical meaning of the first column of an orthogonal matrix?

Let E be the orthogonal and a1 = (1, 0, · · · , 0).

• Ea1 is the first column vector.

• In addition, Ea1 is the image of a linear map E for a1, which is the first coordinate basis

vector.

• That is, the first column vector is the transformed image of the first coordinate basis

vector.

To sum up, each column of E denotes an image of each coordinate basis transformed by E. Since

the transformed image is orthogonal to each other, the map can be regarded as a geometrical

rotation.
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Diagonal matrix

Let D = diag(d1, · · · , dp) ∈ Rp×p be diagonal matrix and x = (x1, · · · , xp) ∈ Rp. Then,

Dx = (d1x1, · · · , dpxp)>

The map D is called the scaling map.

앞다행, 뒤다열!
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Eigendecomposition

Let A ∈ Rp×p be a symmetric matrix. Then there exists an orthogonal matrix E and a diagonal

matrix D (with real-valued elements) such that

A = EDE>

• Orthogonality of E: write

E = [e1, · · · , ep]

then e>j ek = 0 for j 6= k and ‖ej‖ = 1 for all j.

• Projection onto C(ej) is given by ej(e
>
j ej)

−1e>j = eje
>
j
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Eigendecomposition Suppose that A be a symmetric matrix. Let λj be the jth diagonal element

of D, then we can write

A = EDE> =

p∑
j=1

λjeje
>
j

We can know that A is the sum of orthogonal projection operators. ejs are eigenvector and λj
is the associated eigenvalue. C(ej) is eigenspace spaned by ej .
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For simplicity let A be 2× 2 matrix.

• Let D1 = diag(λ1, 0) and D2 = diag(λ2, 0), then

D1E
> = λ1

(
e>1
0

)
and D2E

> = λ2

(
0

e>2

)

• We can easily show that

(
e1 e2

)( e>1
e>2

)
= e1e

>
1 + e>2 e2

Thus,

A = EDE> = E(D1E
> +D2E

>) = λ1e1e
>
1 + λ2e

>
2 e2
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Eigendecomposition

This eigendecomposition can be viewed as the decomposition of a linear map:

LA =

p∑
j=1

λjLEj
,

where Ej = eje
>
j .

Note that

• projection onto C(ej) is given by ej(e
>
j ej)

−1e>j = eje
>
j
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Therefore,

LA(x) =

p∑
j=1

λjLEj
(x),

where LEj
(x) is projection onto the jth eigenspace.
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Approximation of Linear map

Let A(k) =
∑k
j=1 λjeje

>
j then A(k) approximates A?
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EDE>x = [e1, · · · , ep]diag(λ1, · · · , λp)

 e>1
...

e>p

x

= [e1, · · · , ep]diag(λ1, · · · , λp)

 e>1 x
...

e>p x



= [e1, · · · , ep]

 λ1e
>
1 x

...

λpe
>
p x


=

p∑
j=1

ej(λje
>
j x) = (

p∑
j=1

λjeje
>
j )x,
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Eigendecomposition shows the linear map of a symmetric matrix as the composition of three

operations:

Ax = EDE>x

x 7→ E>x (rotation) 7→ D(E>x) (scaling)

7→ E(DE>x) (reverse rotation)
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Inverse matrix of positive definite matrix

Let A be symmetric and nonnegative definite matrix. Then the minimum eigenvalue is positive

if and only if A is positive definite.

pf) Let λmin be the minumum eigenvalue of A. Assume that λmin > 0. Let x =
∑
j=1 ajej 6= 0,

then

x>Ax =

p∑
j=1

λj(e
>
j x)2 =

p∑
j=1

λja
2
j > 0.

Assume that A is pd matrix. WLOG, let λp be the minimum eigenvalue of A. Then,

e>p Aep =
∑
j=1

λj(e
>
j ep)

2 = λp > 0.
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Inverse matrix of positive definite matrix

The inverse matrix of such A is given by

A−1 = ED−1E>.

pf) ED−1E>A = ED−1 E>E︸ ︷︷ ︸
=I

DE> = I

and AED−1E> = EDE>E︸ ︷︷ ︸
=I

D−1E> = I. By definition of the inverse matrix, we obtain the

result.
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잠깐!

특별히 pd matrix A ∈ Rp×p에 대해서

λmin = min
x

x>Ax

‖x‖2
, λmax = max

x

x>Ax

‖x‖2

라 놓으면 λmax ≥ λmin > 0 이며, λmax, λmin 각각 A의 maximum eigenvalue, minimum eigenvalue에 해당한다. 한편 pd matrix

A에서 Eigenmatrix의 열 e1, · · · ep는 다음과 같이 구할 수 있다.

• e1 = argmaxx∈Rp
x>Ax
‖x‖2

• e2 = argmaxx∈Rp:x⊥e1
x>Ax
‖x‖2

• e3 = argmaxx∈Rp:x⊥C([e1,e2])
x>Ax
‖x‖2

• · · ·
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Singular Value Decomposition

Let X ∈ Rn×p (p < n) denote a (row-centered) data matrix whose rows are observations and

columns are variables. The singular value decomposition (SVD) factorises X as

X = U Σ V>,

where

• U =
[
U1, . . . , Up

]
∈ Rn×p contains the left singular vectors (U>U = Ip);

• V =
[
V1, . . . , Vp

]
∈ Rp×p contains the right singular vectors (V>V = Ip);

• Σ = diag(σ1, . . . , σp) with singular values σ1 ≥ σ2 ≥ · · · ≥ σp > 0;

• r = rank(X) ≤ min{n, p}.
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Singular Value Decomposition: Example i

Let

A =

3 1

2 2

1 3

 ∈ R3×2

be a real matrix with rank p = 2. The reduced singular value decomposition (SVD) of A is

given by

A = UΣV>

where

• U =

−0.5026 0.7746

−0.5740 −0.6325

−0.6464 0.0000

 ∈ R3×2 contains the left singular vectors (orthonormal:

U>U = I2),
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Singular Value Decomposition: Example ii

• Σ =

[
5.1962 0

0 1.7321

]
∈ R2×2 is the diagonal matrix of singular values,

• V =

[
−0.7071 −0.7071

−0.7071 0.7071

]
∈ R2×2 contains the right singular vectors (orthonormal:

V>V = I2).

Thus, the matrix A can be approximately reconstructed as

A ≈ UΣV> =

3 1

2 2

1 3

 .
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Data and representation

(A)ij denotes the entry of A in the row i and the column j. For i = 1, · · · , n,

xi = (X)i1e1 + · · ·+ (X)ipep,

where {e1, . . . , ep} forms the standard basis of Rp.

• Coordinate system: (e1, · · · , ep)
• Scaling factor: (1, . . . , 1) ∈ Rp

• Representation of xi w.r.t the (e1, · · · , ep): ((X)i1, · · · , (X)ip) ∈ Rp.

How to obtain low dimensional representation of xi effectively?
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SVD: Definition & Structure

Full SVD (rank p)

X = U︸︷︷︸
n×p

Σ︸︷︷︸
p×p

V>︸︷︷︸
p×p

=

p∑
i=1

σi UiV
>
i , σ1 ≥ · · · ≥ σp > 0.

UΣ =
[
U1 · · ·Up

]σ1 . . .

σp

 =
[
σ1U1 · · ·σpUp

]
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SVD: Definition & Structure

X =
[
σ1U1 · · · σpUp

]

V >1
V >2

...

V >p

 = σ1 U1V
>
1 + · · ·+ σpUpV

>
p

The example below helps understanding the above equation:u11 u21
u12 u22
u13 u23


︸ ︷︷ ︸

U∈R3×2

[
σ1v11 σ1v21
σ2v12 σ2v22

]
︸ ︷︷ ︸

ΣV>∈R2×2

=
[
U1 U2

] [β11 β12
β21 β22

]

=
[
β11U1 + β21U2 β12U1 + β22U2

]
= [β11U1 β12U1] + [β21U2 β22U2]

= U1[β11 β12] + U2[β21 β22]

= U1σ1V
>
1 + U2σ2V

>
2 = σ1U1V

>
1 + σ2U2V

>
2 .
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SVD: Definition & Structure

Our conclusion is that a data matrix X ∈ Rn×p has the following representation,

X = U︸︷︷︸
n×p

Σ︸︷︷︸
p×p

V>︸︷︷︸
p×p

=

p∑
i=1

σi UiV
>
i , σ1 ≥ · · · ≥ σp > 0.
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SVD and representation

Denote the ith row vector of X by x>i . Then,

X =

x
>
1
...

x>n

 = UΣV> =
[
U1 · · · Up

]σ1V >1· · ·
σpV

>
p


︸ ︷︷ ︸
=ΣV>

.

By taking transpose operator on X

[
x1 · · · xn

]
=
[
σ1V1 · · · σpVp

]
U>.

Thus, x1 = σ1V1×(U>)11+σ2V2×(U>)21+· · ·+σkVk×(U>)p1, which implies (σ1(U>)11, · · · , σp(U>)p1)

is a representation of x1 with respect to (V1, · · · , Vp).
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SVD and representation

For i = 1, · · · , n,

xi = σ1(U>)1i × V1 + σ2(U>)2i × V2 + · · ·+ σp(U
>)pi × Vp

and (U>)ji = Uij , the following interpretations are derived from SVD.

• New (orthonormal) coordinate system: (V1, · · · , Vp)
• Scaling factor: (σ1, · · · , σp)
• Representation of xi w.r.t the (V1, · · · , Vp): (σ1Ui1, · · · , σpUip).
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Singular Value Decomposition: Example i

A =

3 1

2 2

1 3

 ∈ R3×2

There is three observation in R2. x>1 = (3, 1), the representation of the ith obs with respect to

(1, 0)>, (0, 1)>.

U =

−0.5026 0.7746

−0.5740 −0.6325

−0.6464 0.0000

 ∈ R3×2

The first row of U, (−0.5026, 0.7746) is the representation of x1 with respect to (−0.7071,−0.7071)

and (−0.7071, 0.7071).
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Rank-k Truncated SVD: Definition & Structure

Full SVD (rank p)

X =

p∑
i=1

σi UiV
>
i , σ1≥· · ·≥σp>0.

If σj ' 0 for all j > k, then X '
∑k
i=1 σi UiV

>
i . That is, xi is represented based on the

basis {V1, · · · , Vk} of a k-dimensional subspace and (Ui1, · · · , Uik) ∈ Rk is the rank-reduced

representation of xi.
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Rank-2 Truncated SVD: Visualization

Let Xk =
∑k
i=1 σi UiV

>
i . and the denote ith row vector of Xk by x̃>i .

• Axis: V1 (horizontal) and V2 (vertical)

• Interpretations of the Axis:

V1 = (v11, · · · , v1p)> =
∑p
j=1 v1jej and V2 = (v21, · · · , v2p)> =

∑p
j=1 v1jej , where ejs

are the standard basis. Vj is explained by the covariates’s names of the data and the

associated coefficients (vj1, · · · , vjp).

(ex) Suppose that V1 = (0.7101,−0.7101, 0, · · · , 0), X1: GDP, X2 : interest rate, then V1
is the weighted sum of GDP and interest rate with the weight (0.7101,−0.7101).

• Poisiton of x̃>i : (σ1Ui1, σ2Ui2).
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