Linear algebra for computational statistics III

Jong-June Jeon

September, 2025

Department of Statistics, University of Seoul

Things to know

- basic operation of matrix
- spanning space, null space
- projection and geometry
- linear map and matrix

Decomposition of matrix

Decomposition of linear maps

Step 3

행렬이 대응시키는 변환을 분해하는 과정을 소개한다. 먼저 내적을 도입하여, 벡터공간 위에서 거리와 각도가 자연스럽게 정의되는 과정을 살펴본다. 다음으로 대칭인 반양정치행렬의 분해를 특별한 직교 선형변환의 분해로 이해할 수 있으며, 이를 통해 행렬의 대응을 분해하여 해석한다. 여기서는 내적공간(inner product space)와 정사형(projection), Spectral Decomposition, Singular Value Decomposition을 배운다.

Inner product An inner product space is a vector space V with an inner product:

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

that satisfies the following three properties for all vectors $x, y, z \in V$ and all scalars $a \in \mathbb{R}$.

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity:

$$\langle ax, y \rangle = a \langle x, y \rangle$$

 $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

• Positive-definite: $\langle x, x \rangle > 0, x \in V - \{0\}$

example

Suppose that $a,b \in \mathbb{R}^p$

- Let $\langle a, b \rangle = a^{\top}b$. Then the $\langle \cdot, \cdot \rangle$ is inner product?
- Let $H \in \mathbb{R}^{p \times p}$ is symmetric and $\langle a, b \rangle = a^{\top} H b$. Then the $\langle \cdot, \cdot \rangle$ is inner product?
- ullet If H is positive definite, ...

(NOTE) Vector space에는 Addition과 scalar multiplication 연산만 정의되어 있다. Vector space 위에 inner production 연산을 정의해놓으면, Vector space 위에 각도를 정의할 수 있다. 한편 inner production 연산이 주어지면 원소의 길이(norm) 혹은 두 원소간의 거리 (distance)를 정의할 수 있다.

- For $x,y \in V$ define $\langle x,y \rangle = x^{\top}y$. If $x^{\top}y = 0$ we write $x \perp y$
- We define the norm of $x \in V$ by $||x|| = \sqrt{x^{\top}x}$
- We can define the distance between x and y by d(x,y) = ||x-y||

Hereafter, we use the above definition of the inner product and the norm in our vector space V.

angle and inner product (law of cosine)

- Let a point A, B, C in \mathbb{R}^2 and C is the origin and B is a point on x-axis.
- Let the length of \overline{AB} , \overline{BC} and \overline{CA} be c, a, and b, respectively.
- Let the angle $\angle C$ be θ .
- The point A is $(b\cos\theta, b\sin\theta)$, and the point B=(a,0). Thus,

$$c^{2} = (b\cos\theta - a)^{2} + b^{2}\sin^{2}\theta$$
$$= a^{2} + b^{2} - 2ab\cos\theta$$

angle and inner product

Because the law of cosine is the fact derived only from geometry, we can apply the law of cosine to a Euclidean space.

Consider a vector u, v, and u-v and denote the norms of the vectors by $\|u\|$, $\|v\|$, and $\|u-v\|$, respectively. Note that $\|u\|$, $\|v\|$, and $\|u-v\|$ correspond to b, a, and c. By the law of cosine

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos(\theta),$$

which reduces to

$$u^{\top}v = ||u|||v||\cos(\theta).$$

As a result the angle in \mathbb{R}^p are defined by the law of cosine.

angle and inner product Thus,

- $\cos(\theta) = u^{\mathsf{T}} v / (\|u\| \|v\|)$
- $u^{\top}v = 0$ is regarded as $u \perp v$

ch) Let u and v be points on a unit sphere and let d be a Euclidean distance between u and v. Then,

$$u^{\top}v = \cos(\theta) = 1 - \frac{1}{2}d^2.$$

The equation shows the relationships of inner product, cosine similarity, and distance.

angle and inner product

Projection

Suppose that V is an inner product vector space. Let $x,y\in V$ then there exists $\hat{y}\in\mathcal{C}(x)$ such that $(y-\hat{y})\perp x$. That is y is decomposed into $y=\hat{y}+(y-\hat{y})$ with $\hat{y}\perp(y-\hat{y})$.

Transpose and projection (figure will be corrected!)

Figure 1: Illustration of projection via transpose operation

$$y = ax + (y - ax)$$
 with $a = y^{\top}x/\|x\|^2 \in \mathbb{R}$

Projection Let $y, x_1, \cdots, x_k \in V$ and suppose that x_1, \cdots, x_k are linearly independent. Consider $X = [x_1, \cdots, x_k]$ and $\mathcal{C}(X)$. Then, how can we find $\hat{y} \in \mathcal{C}(X)$ such that

$$y = \hat{y} + (y - \hat{y})$$

satisfying $\hat{y} \perp (y - \hat{y})$?

The answer is the Projection map (matrix)!

Orthogonal Projection Let $x, y \in \mathbb{R}^p$ and consider Π , a linear map from \mathbb{R}^p to \mathbb{R}^p . The projection map of y onto C(x) satisfies the following properties:

- $\Pi y \in \mathcal{C}(x)$;
- $(\Pi y)^{\top} y = y^{\top} (\Pi y) = 0;$
- $\Pi(\Pi y) = \Pi y$

Orthogonal Projection

Orthogonal projection is a linear map defined by $\Pi: V \mapsto V$ (in fact, we can understand the P as a matrix) such that $\Pi = \Pi^2 = \Pi^\top$.

- Let $\Pi = x(x^{\top}x)^{-1}x^{\top}$ then $\Pi = \Pi^2 = \Pi^{\top}$?
- $\Pi y \in \mathcal{C}(x)$ for $x \in V$?
- $\langle \Pi y, y \Pi y \rangle = 0$?

You can conclude that the Π is the orthogonal projection operator (onto C(x)).

Orthogonal Projection

- Let $x, y \in \mathbb{R}^n$ and compute the projection of y onto $\mathcal{C}(x)$. Then, it is given by $(x(x^\top x)^{-1}x^\top)y$. Show that $x(x^\top x)^{-1}x^\top$ is a projection operator.
- Let $X \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^n$. Compute the projection of y onto $\mathcal{C}(X)$.
- Write an example and confirm the result numerically.

잠깐!

회귀모형의 OLS를 돌이켜보자. Response vector $Y \in \mathbb{R}^n$ 과 predictor matrix $X \in \mathbb{R}^{n \times p}$ 일때, OLS를 이용한 Y값의 추정량은

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y \in \mathbb{R}$$

로 주어진다. 여기서 $X(X^\top X)^{-1}X^\top$ 가 $\mathcal{C}(X)$ 에 Projection operator 고 $\hat{Y}\in\mathcal{C}(X)$ 이며 $(Y-\hat{Y})\perp\hat{Y}$ 임을 알 수 있다.

Projection은 벡터 성분을 직교분해할 때 흔히 볼 수 있었던 연산이다.

Basic on undergraduate levels

- Symmetric Matrix
- Orthogonal Matrix

Orthogonal matrix

ullet Orthogonal matrix E: a square matrix satisfying

$$E=[e_1,\cdots,e_p],$$

where $e_i^{\top} e_k = 0$ for $j \neq k$ and $||e_j|| = 1$ for all j.

- It is easily shown that $E^{\top}E = I$.
- Because $E(E^{\top}E) = E$, $EE^{\top} = I$.

That is, $E^{\top}E = EE^{\top} = I$, and E^{\top} is the inverse of E.

Orthogonal matrix (Isometric transformation)

Let $E \in \mathbb{R}^{p \times p}$ be orthogonal matrix and $x, y \in \mathbb{R}^p$. d(x, y) = d(Ex, Ey)?

$$d(x,y)^{2} = (x-y)^{\top}(x-y) = (x-y)^{\top}E^{\top}E(x-y)$$
$$= ||E(x-y)||^{2} = d(Ex, Ey)^{2}$$

The map \mathcal{L}_E preserves the distance (isometric). Actually, E is understood as the rotation map.

Orthogonal matrix (Rotation)

What is the geometrical meaning of the first column of an orthogonal matrix?

Let E be the orthogonal and $a_1 = (1, 0, \dots, 0)$.

- Ea_1 is the first column vector.
- In addition, Ea_1 is the image of a linear map E for a_1 , which is the first coordinate basis vector.
- That is, the first column vector is the transformed image of the first coordinate basis vector.

To sum up, each column of E denotes an image of each coordinate basis transformed by E. Since the transformed image is orthogonal to each other, the map can be regarded as a geometrical rotation.

Diagonal matrix

Let $D = diag(d_1, \dots, d_p) \in \mathbb{R}^{p \times p}$ be diagonal matrix and $x = (x_1, \dots, x_p) \in \mathbb{R}^p$. Then,

$$Dx = (d_1x_1, \cdots, d_px_p)^{\top}$$

The map D is called the scaling map.

앞다행, 뒤다열!

Eigendecomposition

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric matrix. Then there exists an orthogonal matrix E and a diagonal matrix D (with real-valued elements) such that

$$A = EDE^{\top}$$

• Orthogonality of E: write

$$E = [e_1, \cdots, e_p]$$

then $e_i^{\top} e_k = 0$ for $j \neq k$ and $||e_j|| = 1$ for all j.

 \bullet Projection onto $\mathcal{C}(e_j)$ is given by $e_j(e_j^\top e_j)^{-1}e_j^\top = e_je_j^\top$

Eigendecomposition Suppose that A be a symmetric matrix. Let λ_j be the jth diagonal element of D, then we can write

$$A = EDE^{\top} = \sum_{j=1}^{p} \lambda_j e_j e_j^{\top}$$

We can know that A is the sum of orthogonal projection operators. e_j s are eigenvector and λ_j is the associated eigenvalue. $C(e_j)$ is eigenspace spaned by e_j .

For simplicity let A be 2×2 matrix.

• Let $D_1 = \operatorname{diag}(\lambda_1, 0)$ and $D_2 = \operatorname{diag}(\lambda_2, 0)$, then

$$D_1 E^\top = \lambda_1 \left(\begin{array}{c} e_1^\top \\ 0 \end{array} \right) \text{ and } D_2 E^\top = \lambda_2 \left(\begin{array}{c} 0 \\ e_2^\top \end{array} \right)$$

• We can easily show that

$$\left(\begin{array}{cc} e_1 & e_2 \end{array} \right) \left(\begin{array}{c} e_1^\top \\ e_2^\top \end{array} \right) = e_1 e_1^\top + e_2^\top e_2$$

Thus,

$$A = EDE^{\top} = E(D_1E^{\top} + D_2E^{\top}) = \lambda_1 e_1 e_1^{\top} + \lambda_2 e_2^{\top} e_2$$

Eigendecomposition

This eigendecomposition can be viewed as the decomposition of a linear map:

$$\mathcal{L}_A = \sum_{j=1}^p \lambda_j \mathcal{L}_{E_j},$$

where $E_j = e_j e_i^{\top}$.

Note that

 \bullet projection onto $\mathcal{C}(e_j)$ is given by $e_j(e_j^\top e_j)^{-1}e_j^\top = e_je_j^\top$

Therefore,

$$\mathcal{L}_A(x) = \sum_{j=1}^p \lambda_j \mathcal{L}_{E_j}(x),$$

where $\mathcal{L}_{E_j}(x)$ is projection onto the jth eigenspace.

Approximation of Linear map

Let
$$A^{(k)} = \sum_{j=1}^k \lambda_j e_j e_j^{\top}$$
 then $A^{(k)}$ approximates A ?

$$\begin{split} EDE^{\top}\mathbf{x} &= [e_{1}, \cdots, e_{p}] \mathsf{diag}(\lambda_{1}, \cdots, \lambda_{p}) \begin{pmatrix} e_{1}^{\top} \\ \vdots \\ e_{p}^{\top} \end{pmatrix} \mathbf{x} \\ &= [e_{1}, \cdots, e_{p}] \mathsf{diag}(\lambda_{1}, \cdots, \lambda_{p}) \begin{pmatrix} e_{1}^{\top}\mathbf{x} \\ \vdots \\ e_{p}^{\top}\mathbf{x} \end{pmatrix} \\ &= [e_{1}, \cdots, e_{p}] \begin{pmatrix} \lambda_{1}e_{1}^{\top}\mathbf{x} \\ \vdots \\ \lambda_{p}e_{p}^{\top}\mathbf{x} \end{pmatrix} \\ &= \sum_{i=1}^{p} e_{j}(\lambda_{j}e_{j}^{\top}\mathbf{x}) = (\sum_{i=1}^{p} \lambda_{j}e_{j}e_{j}^{\top})\mathbf{x}, \end{split}$$

Eigendecomposition shows the linear map of a symmetric matrix as the composition of three operations:

$$Ax = EDE^{\top}x$$

$$x \mapsto E^{\top}x$$
 (rotation) $\mapsto D(E^{\top}x)$ (scaling) $\mapsto E(DE^{\top}x)$ (reverse rotation)

Inverse matrix of positive definite matrix

Let A be symmetric and nonnegative definite matrix. Then the minimum eigenvalue is positive if and only if A is positive definite.

pf) Let λ_{min} be the minumum eigenvalue of \mathbf{A} . Assume that $\lambda_{min} > 0$. Let $\mathbf{x} = \sum_{j=1} a_j e_j \neq 0$, then

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{j=1}^{p} \lambda_j (e_j^{\top} \mathbf{x})^2 = \sum_{j=1}^{p} \lambda_j a_j^2 > 0.$$

Assume that **A** is pd matrix. WLOG, let λ_p be the minimum eigenvalue of **A**. Then,

$$e_p^{\top} \mathbf{A} e_p = \sum_{j=1} \lambda_j (e_j^{\top} e_p)^2 = \lambda_p > 0.$$

Inverse matrix of positive definite matrix

The inverse matrix of such A is given by

$$\mathbf{A}^{-1} = \mathbf{E} D^{-1} \mathbf{E}^{\top}.$$

$$\mathsf{pf}) \; \mathbf{E} D^{-1} \mathbf{E}^{\top} \mathbf{A} = \mathbf{E} D^{-1} \underbrace{\mathbf{E}^{\top} \mathbf{E}}_{=I} D \mathbf{E}^{\top} = I$$

and $\mathbf{A}\mathbf{E}D^{-1}\mathbf{E}^{\top} = \mathbf{E}D\underbrace{\mathbf{E}^{\top}\mathbf{E}}_{=I}D^{-1}\mathbf{E}^{\top} = I$. By definition of the inverse matrix, we obtain the result.

잠깐!

특별히 pd matrix $A \in \mathbb{R}^{p \times p}$ 에 대해서

$$\lambda_{\min} = \min_{x} \frac{x^{\top} A x}{\|x\|^2}, \quad \lambda_{\max} = \max_{x} \frac{x^{\top} A x}{\|x\|^2}$$

라 놓으면 $\lambda_{\max} \geq \lambda_{\min} > 0$ 이며, $\lambda_{\max}, \lambda_{\min}$ 각각 A의 maximum eigenvalue, minimum eigenvalue에 해당한다. 한편 pd matrix A에서 Eigenmatrix의 열 $e_1, \cdots e_p$ 는 다음과 같이 구할 수 있다.

- $\bullet \ e_1 = \operatorname{argmax}_{x \in \mathbb{R}^p} \frac{x^{\top} A x}{\|x\|^2}$
- $e_2 = \operatorname{argmax}_{x \in \mathbb{R}^p : x \perp e_1} \frac{x^{\top} A x}{\|x\|^2}$
- $\bullet \ \ e_3 = \mathrm{argmax}_{x \in \mathbb{R}^p: x \perp \mathcal{C}([e_1, e_2])} \frac{x^{\top} A x}{\|x\|^2}$
- ...

Singular Value Decomposition

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ (p < n) denote a (row-centered) data matrix whose rows are observations and columns are variables. The *singular value decomposition* (SVD) factorises \mathbf{X} as

$$\mathbf{X} = \mathbf{U} \, \mathbf{\Sigma} \, \mathbf{V}^{\top},$$

where

- $\mathbf{U} = [U_1, \dots, U_p] \in \mathbb{R}^{n \times p}$ contains the left singular vectors $(\mathbf{U}^\top \mathbf{U} = \mathbf{I}_p)$;
- $\mathbf{V} = [V_1, \dots, V_p] \in \mathbb{R}^{p \times p}$ contains the right singular vectors $(\mathbf{V}^\top \mathbf{V} = \mathbf{I}_p)$;
- $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_p)$ with singular values $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_p > 0$;
- $r = \operatorname{rank}(\mathbf{X}) \le \min\{n, p\}.$

Singular Value Decomposition: Example i

Let

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

be a real matrix with rank p=2. The **reduced singular value decomposition** (SVD) of ${\bf A}$ is given by

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

where

•
$$\mathbf{U} = \begin{bmatrix} -0.5026 & 0.7746 \\ -0.5740 & -0.6325 \\ -0.6464 & 0.0000 \end{bmatrix} \in \mathbb{R}^{3\times 2}$$
 contains the left singular vectors (orthonormal: $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}_2$).

Singular Value Decomposition: Example ii

- $\Sigma = \begin{bmatrix} 5.1962 & 0 \\ 0 & 1.7321 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$ is the diagonal matrix of singular values,
- $\mathbf{V} = \begin{bmatrix} -0.7071 & -0.7071 \\ -0.7071 & 0.7071 \end{bmatrix} \in \mathbb{R}^{2\times 2}$ contains the right singular vectors (orthonormal: $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I_2}$).

Thus, the matrix A can be approximately reconstructed as

$$\mathbf{A} pprox \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op} = egin{bmatrix} 3 & 1 \ 2 & 2 \ 1 & 3 \end{bmatrix}.$$

Data and representation

 $(A)_{ij}$ denotes the entry of A in the row i and the column j. For $i=1,\cdots,n$,

$$x_i = (X)_{i1}e_1 + \dots + (X)_{ip}e_p,$$

where $\{e_1, \ldots, e_p\}$ forms the standard basis of \mathbb{R}^p .

- Coordinate system: (e_1, \dots, e_p)
- Scaling factor: $(1, \ldots, 1) \in \mathbb{R}^p$
- Representation of x_i w.r.t the (e_1,\cdots,e_p) : $((X)_{i1},\cdots,(X)_{ip})\in\mathbb{R}^p$.

How to obtain low dimensional representation of x_i effectively?

SVD: Definition & Structure

Full SVD (rank p)

$$\mathbf{X} = \underbrace{\mathbf{U}}_{n \times p} \underbrace{\mathbf{\Sigma}}_{p \times p} \underbrace{\mathbf{V}}_{p \times p}^{\top} = \sum_{i=1}^{p} \sigma_{i} U_{i} V_{i}^{\top}, \quad \sigma_{1} \ge \dots \ge \sigma_{p} > 0.$$

$$\mathbf{U}\mathbf{\Sigma} = \begin{bmatrix} U_1 & \cdots & U_p \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_p \end{bmatrix} = \begin{bmatrix} \sigma_1 U_1 & \cdots & \sigma_p U_p \end{bmatrix}$$

SVD: Definition & Structure

$$\mathbf{X} = \begin{bmatrix} \sigma_1 U_1 & \cdots & \sigma_p U_p \end{bmatrix} \begin{bmatrix} V_1^\top \\ V_2^\top \\ \vdots \\ V_p^\top \end{bmatrix} = \sigma_1 \ U_1 V_1^\top + \cdots + \sigma_p U_p V_p^\top$$

The example below helps understanding the above equation:

$$\underbrace{\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \\ u_{13} & u_{23} \end{bmatrix}}_{\mathbf{U} \in \mathbb{R}^{3 \times 2}} \underbrace{\begin{bmatrix} \sigma_1 v_{11} & \sigma_1 v_{21} \\ \sigma_2 v_{12} & \sigma_2 v_{22} \end{bmatrix}}_{\mathbf{\Sigma} \mathbf{V}^\top \in \mathbb{R}^{2 \times 2}} = \begin{bmatrix} \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix} \\ & = \begin{bmatrix} \beta_{11} U_1 + \beta_{21} U_2 & \beta_{12} U_1 + \beta_{22} U_2 \end{bmatrix} \\ & = \begin{bmatrix} \beta_{11} U_1 & \beta_{12} U_1 \end{bmatrix} + \begin{bmatrix} \beta_{21} U_2 & \beta_{22} U_2 \end{bmatrix} \\ & = \underbrace{U_1 \begin{bmatrix} \beta_{11} & \beta_{12} \end{bmatrix} + U_2 \begin{bmatrix} \beta_{21} & \beta_{22} \end{bmatrix}}_{\text{Linear algebra for computational statistics III}}$$

SVD: Definition & Structure

Our conclusion is that a data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ has the following representation,

$$\mathbf{X} = \underbrace{\mathbf{U}}_{n \times p} \underbrace{\mathbf{\Sigma}}_{p \times p} \underbrace{\mathbf{V}}_{p \times p}^{\top} = \sum_{i=1}^{p} \sigma_{i} U_{i} V_{i}^{\top}, \quad \sigma_{1} \ge \dots \ge \sigma_{p} > 0.$$

SVD and representation

Denote the *i*th row vector of \mathbf{X} by x_i^{T} . Then,

$$\mathbf{X} = \begin{bmatrix} x_1^\top \\ \vdots \\ x_n^\top \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top = \begin{bmatrix} U_1 & \cdots & U_p \end{bmatrix} \underbrace{\begin{bmatrix} \sigma_1 V_1^\top \\ \cdots \\ \sigma_p V_p^\top \end{bmatrix}}_{=\mathbf{\Sigma} \mathbf{V}^\top}.$$

By taking transpose operator on ${f X}$

$$\begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} \sigma_1 V_1 & \cdots & \sigma_p V_p \end{bmatrix} \mathbf{U}^\top.$$

Thus, $x_1 = \sigma_1 V_1 \times (U^\top)_{11} + \sigma_2 V_2 \times (U^\top)_{21} + \dots + \sigma_k V_k \times (U^\top)_{p1}$, which implies $(\sigma_1(U^\top)_{11}, \dots, \sigma_p(U^\top))_{p1}$ is a representation of x_1 with respect to (V_1, \dots, V_p) .

SVD and representation

For $i = 1, \dots, n$,

$$x_i = \sigma_1(U^{\top})_{1i} \times V_1 + \sigma_2(U^{\top})_{2i} \times V_2 + \dots + \sigma_p(U^{\top})_{pi} \times V_p$$

and $(U^{\top})_{ji} = U_{ij}$, the following interpretations are derived from SVD.

- New (orthonormal) coordinate system: (V_1, \cdots, V_p)
- Scaling factor: $(\sigma_1, \cdots, \sigma_p)$
- Representation of x_i w.r.t the (V_1, \dots, V_p) : $(\sigma_1 U_{i1}, \dots, \sigma_p U_{ip})$.

Singular Value Decomposition: Example i

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

There is three observation in \mathbb{R}^2 . $x_1^{\top}=(3,1)$, the representation of the ith obs with respect to $(1,0)^{\top},(0,1)^{\top}$.

$$\mathbf{U} = \begin{bmatrix} -0.5026 & 0.7746 \\ -0.5740 & -0.6325 \\ -0.6464 & 0.0000 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

The first row of U, (-0.5026, 0.7746) is the representation of x_1 with respect to (-0.7071, -0.7071) and (-0.7071, 0.7071).

Rank-k Truncated SVD: Definition & Structure

Full SVD (rank p)

$$\mathbf{X} = \sum_{i=1}^{p} \sigma_i U_i V_i^{\top}, \quad \sigma_1 \ge \dots \ge \sigma_p > 0.$$

If $\sigma_j \simeq 0$ for all j > k, then $\mathbf{X} \simeq \sum_{i=1}^k \sigma_i U_i V_i^{\top}$. That is, x_i is represented based on the basis $\{V_1, \cdots, V_k\}$ of a k-dimensional subspace and $(U_{i1}, \cdots, U_{ik}) \in \mathbb{R}^k$ is the rank-reduced representation of x_i .

Rank-2 Truncated SVD: Visualization

Let $\mathbf{X}_k = \sum_{i=1}^k \sigma_i U_i V_i^{\mathsf{T}}$. and the denote ith row vector of \mathbf{X}_k by \tilde{x}_i^{T} .

- Axis: V_1 (horizontal) and V_2 (vertical)
- Interpretations of the Axis:

$$V_1 = (v_{11}, \cdots, v_{1p})^{\top} = \sum_{j=1}^p v_{1j}e_j$$
 and $V_2 = (v_{21}, \cdots, v_{2p})^{\top} = \sum_{j=1}^p v_{1j}e_j$, where e_j s are the standard basis. V_j is explained by the covariates's names of the data and the associated coefficients (v_{j1}, \cdots, v_{jp}) .

- (ex) Suppose that $V_1=(0.7101,-0.7101,0,\cdots,0)$, X_1 : GDP, X_2 : interest rate, then V_1 is the weighted sum of GDP and interest rate with the weight (0.7101,-0.7101).
- Poisiton of \tilde{x}_i^{\top} : $(\sigma_1 U_{i1}, \sigma_2 U_{i2})$.