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Things to know

basic operation of matrix
e spanning space, null space
e projection and geometry

e linear map and matrix
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Decomposition of matrix

Decomposition of linear maps
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Inner product An inner product space is a vector space V with an inner product:

() VXV =R
that satisfies the following three properties for all vectors x,y,z € V' and all scalars a € R.
o Symmetry: (z,y) = (y,2)

e Linearity:

(az,y) = afz,y)
(z+y,2)
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e Positive-definite: (x,z) > 0,2 € V — {0}
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example

Suppose that a,b € RP

e Let (a,b) = a'b. Then the (-,-) is inner product?
e Let H € RPXP is symmetric and (a,b) = a' Hb. Then the (-, ) is inner product?

e If H is positive definite, ...
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e For z,y € V define (z,y) =2 Ty. If 2Ty =0 we write z Ly
e We define the norm of z € V by ||z]| = Va Tz
e We can define the distance between x and y by d(z,y) = ||z — y||

Hereafter, we use the above definition of the inner product and the norm in our vector space V.
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angle and inner product (law of cosine)

e Let a point A, B,C in R? and C is the origin and B is a point on z-axis.
e Let the length of AB, BC and CA be ¢, a, and b, respectively.

Let the angle ZC be 6.

The point A is (bcos6,bsinf), and the point B = (a,0). Thus,

c (bcosf — a)? + b*sin” 0
= a®+4b*> —2abcosf
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angle and inner product

Because the law of cosine is the fact derived only from geometry, we can apply the law of cosine
to a Euclidean space.

Consider a vector u, v, and u— v and denote the norms of the vectors by ||u||, ||v||, and |ju—v]|,
respectively. Note that |||, ||v||, and ||u — v|| correspond to b, a, and c. By the law of cosine

lw—ol|® = [lul® + Jo]1* = 2ljull]|v]| cos(8),
which reduces to
-

u' v = [ul/[[v]| cos(6).

As a result the angle in R? are defined by the law of cosine.
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angle and inner product Thus,

e cos(0) = u'v/(|lull[|v]])

e uw'v=0Iis regarded as u L v

ch) Let u and v be points on a unit sphere and let d be a Euclidean distance between u and v.
Then,

1
u' v=cos(f)=1-— §d2.

The equation shows the relationships of inner product, cosine similarity, and distance.
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angle and inner product
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Projection

Suppose that V' is an inner product vector space. Let 2,y € V then there exists § € C(x) such
that (y —¢) L =. That is y is decomposed into y = ¢+ (y — y) with g L (y — 9).
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Transpose and projection (figure will be corrected!)

x—ae;

ae; A €R

Figure 1: lllustration of projection via transpose operation

g T 2
y=ax+ (y—azx) witha=y'z/||z]* €R
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Projection Let y, z1, -+ ,x; € V and suppose that x1, - - - , xy are linearly independent. Consider
X =[x1, -+ ,x%] and C(X). Then, how can we find § € C(X) such that

y=9+(y—19)
satisfying § L (y — 9)?

The answer is the Projection map (matrix)!
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Orthogonal Projection Let x,y € R? and consider I1, a linear map from R? to R”. The projection

map of y onto C(z) satisfies the following properties:

o Iy € C(x);
o (ly)'y =y (Ily) = 0;
o II(ITy) = Iy
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Orthogonal Projection

Orthogonal projection is a linear map defined by IT: V' +— V (in fact, we can understand the P
as a matrix) such that T =12 =TI ".

o letll=x2(z"2) '2" then I =112 =11"7
o Iy € C(x) forz € V7
o (lly,y —Ily) =07

You can conclude that the IT is the orthogonal projection operator (onto C(z)).
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Orthogonal Projection

e Let 2,y € R™ and compute the projection of y onto C(z). Then, it is given by
(x(zTx)"txT)y. Show that x(x"z) 1z is a projection operator.
e Let X € R™*™ and y € R™. Compute the projection of y onto C(X).

e Write an example and confirm the result numerically.
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Basic on undergraduate levels

e Symmetric Matrix

e Orthogonal Matrix
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Orthogonal matrix

e Orthogonal matrix E: a square matrix satisfying
E = [61,~~ »ep]v

where ejTek =0 for j # k and ||e;|| =1 for all j.
e It is easily shown that ETE = I.
e Because E(E'E)=FE, EET = 1.

Thatis, E'E = EE" =1, and E" is the inverse of E.
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Orthogonal matrix (Isometric transformation)

Let E € RP*P be orthogonal matrix and =,y € RP. d(z,y) = d(Ez, Ey)?

dz,y)? = (@—y) (c—y) =@-y) E E@-y)
= |E(x-y)|?® = d(Ez, Ey)®

The map Lg preserves the distance (isometric). Actually, F is understood as the rotation map.
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Orthogonal matrix (Rotation)

What is the geometrical meaning of the first column of an orthogonal matrix?

Let E be the orthogonal and a; = (1,0, - ,0).

e Faj is the first column vector.

e In addition, Fa; is the image of a linear map E for a1, which is the first coordinate basis
vector.

e That is, the first column vector is the transformed image of the first coordinate basis
vector.

To sum up, each column of E denotes an image of each coordinate basis transformed by E. Since
the transformed image is orthogonal to each other, the map can be regarded as a geometrical

rotation.
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Diagonal matrix

Let D = diag(dy,--- ,d,) € RP*P be diagonal matrix and x = (z1,--- ,x,) € RP. Then,

Dx = (dyz1,- - ,dpxp) "

The map D is called the scaling map.
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Eigendecomposition

Let A € RP*P be a symmetric matrix. Then there exists an orthogonal matrix F and a diagonal
matrix D (with real-valued elements) such that

A=EDET

e Orthogonality of E: write
E= [617"' vep]

then e e, = 0 for j # k and [le;|| = 1 for all j.

e Projection onto C(e;) is given by ej(ejTej)*lejT = ejejT
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Eigendecomposition Suppose that A be a symmetric matrix. Let A; be the jth diagonal element

of D, then we can write

J

p
A=EDE" =) \eje]
j=1

We can know that A is the sum of orthogonal projection operators. ¢;s are eigenvector and A;
is the associated eigenvalue. C(e;) is eigenspace spaned by e;.
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For simplicity let A be 2 x 2 matrix.

e Let D; = diag(A1,0) and Dy = diag(A2,0), then

.
DlET:/\1<e1 > andDzET:A2< OT>
0 €,

e We can easily show that

T

@

1 T T

(61 = ) ( €T>6161 + ey e
2

Thus,

A=EDE" = E(DIE" + D3ET) = Ajere] + Mgeg en
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Eigendecomposition

This eigendecomposition can be viewed as the decomposition of a linear map:

p
Lg= Z NLE;,

Jj=1

— .ol
where E; = eje; .
Note that

e projection onto C(e;) is given by e;(e/ e;)~te] = eje
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Therefore,
p
La(z) = NLg, (),
j=1

where Lg; () is projection onto the jth eigenspace.
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Approximation of Linear map

Let A®) = Z?:l Ajeje) then A%) approximates A?

Department of Statistics, University of Seoul Linear algebra for computational statistics I1I 29 /46



EDETx = Je1, - ,epldiag A, -+, 0) | | x
¢
ef x
= [617"' ,ep}diag()\l,--- 7)‘1))
e;—x
e x
= [617"' 7617}
)\pe;x
P
= Zej(x\jejTX) = (Z )\jejejT)x,
j=1 j=1
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Eigendecomposition shows the linear map of a symmetric matrix as the composition of three
operations:

Az = EDE "z

x + ETx (rotation) — D(E"x) (scaling)
+ E(DETx) (reverse rotation)
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Inverse matrix of positive definite matrix

Let A be symmetric and nonnegative definite matrix. Then the minimum eigenvalue is positive
if and only if A is positive definite.

pf) Let A be the minumum eigenvalue of A. Assume that A, > 0. Let x = ijl aje; # 0,
then

P P
x Ax = Z)\j(e;-rx)2 = Z /\ja? > 0.
j=1

Jj=1

Assume that A is pd matrix. WLOG, let A\, be the minimum eigenvalue of A. Then,

e;Aep = Z )\j(ejTep)z =X\, > 0.
j=1

Department of Statistics, University of Seoul Linear algebra for computational statistics I1I 32/46



Inverse matrix of positive definite matrix

The inverse matrix of such A is given by
AT'=ED'E".

pf) ED-'ETA=ED'E'EDE" =1
——
=

and AED'ET = EDETED 'ET = I. By definition of the inverse matrix, we obtain the

=17
result.
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S35 pd matrix A € RP*P0j| CHaHA

x| Az

Amin = min ———
=" Tl

N = T00RBR
3

2t =98 Anax > Amin > 0 0|04, Anax, Amin 22H A9| maximum eigenvalue, minimum eigenvalue0i| SHESIC} SHH pd matrix
AO||M Eigenmatrix2| & ey, - - - e, = T3t 20| 8 4~ QUCh

—
z' Az
ArgmaX, err 5112

e e

-
— z Az
o 2 = argMaXyeppiole, LT

=
— z T Az
® €3 = ABMAX;erPix 1 C([e1,e2]) |[z)2
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Singular Value Decomposition

Let X € R"*P (p < n) denote a (row-centered) data matrix whose rows are observations and
columns are variables. The singular value decomposition (SVD) factorises X as

X=UXV',

where

e U= [Uy,...,U,] € R™P contains the left singular vectors (U'U =1,);
e V= [Vh e Vp] € RP*P contains the right singular vectors (V'V = L)
e ¥ = diag(oy,...,0p) with singular values oy > g3 > --- > g, > 0;

e r =rank(X) < min{n, p}.
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Singular Value Decomposition: Example i

Let

3 1
A=|2 2| eR?*?
1 3

be a real matrix with rank p = 2. The reduced singular value decomposition (SVD) of A is

given by
A=UxV'
where
—0.5026  0.7746
e U= |-05740 —0.6325| € R3*2 contains the left singular vectors (orthonormal:
—0.6464  0.0000
U'U=1,),
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Singular Value Decomposition: Example ii

5.1962 0
0 1.7321

e X = € R?*? is the diagonal matrix of singular values,

—0. 1 —0.7071
o V= [ 0.707 0.707 € R2*2 contains the right singular vectors (orthonormal:

—0.7071  0.7071
VTV =1L)

Thus, the matrix A can be approximately reconstructed as

3
A~UZV' = |2
1

W N =
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Data and representation

(A);; denotes the entry of A in the row ¢ and the column j. Fori=1,--- ,n,
zi = (X)irer + - + (X)ipep,
where {eq, ..., e,} forms the standard basis of R”.

e Coordinate system: (e1,- - ,€p)
e Scaling factor: (1,...,1) € R?
e Representation of z; w.r.t the (e1, -+ ,ep): (X)i1, -+, (X)ip) € RP.

How to obtain low dimensional representation of x; effectively?
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D: Definition & Structure

Full SVD (rank p)

01
Us =0y U] = oy 0,0,

Op
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SVD: Definition & Structure

X=[aln - U] — o1 WV} + -+ o0,V

P

The example below helps understanding the above equation:

Urr U211

01v11 01021 Bi1 B2
Urp U2 = |Up Us

02V12 02V22 [321 522
U1z U23

EVTERQXZ
UeR3x%2

[511U1 + 21Uz Bi2Ur + 522U2}
[B11U1 Bi2Ur] + [B21Us Ba2Us]
311 Bio] + Ua[B21 Bao
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SVD: Definition & Structure

Our conclusion is that a data matrix X € R™*P has the following representation,

p
X=U X V' =3 oUV,'", o1>->0,>0.
~ N~ 4 '
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SVD and representation

Denote the ith row vector of X by z,/. Then,

‘,I:I 0’1 VlT
X=|: :UEVT:[U1 Up}
x! UprT
n —_———
=>VT

By taking transpose operator on X

[zl zn}:{olvl 00 @l U’

Thus, 21 = 01 Vix (U " )11402Vax (U M)a1++ - 40k Viex (U )1, which implies (o1 (U ")11, -+ ,0,(UT)
is a representation of z; with respect to (Vi,---,V}).
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D and representation

Fori=1,---,n,

2, =01(U )1 x Vi+ 02U g x Vot oo+ 0, (U )i x Vp
and (U");; = U,;, the following interpretations are derived from SVD.

e New (orthonormal) coordinate system: (Vq,---,V,)

e Scaling factor: (o1, ,0,)

o Representation of ; w.r.t the (V4,---,V,): (o1Ui1, -+, 0pUsp).
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Singular Value Decomposition: Example i

3 1
A=1|2 2| eR3*?
1 3

There is three observation in R2. x] = (3, 1), the representation of the ith obs with respect to

(1,0)7,(0,1)T.

—0.5026  0.7746
U= |-0.5740 —0.6325| € R3*2
—0.6464  0.0000

The first row of U, (—0.5026, 0.7746) is the representation of 21 with respect to (—0.7071, —0.7071)
and (—0.7071,0.7071).
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Rank-%£ Truncated SVD: Definition & Structure

Full SVD (rank p)
p
X=> aUV,', 01> >0,>0.

o=l

If o >~ 0 for all j > Kk, then X ~ Zleai UiViT. That is, x; is represented based on the
basis {V1,---,Vi} of a k-dimensional subspace and (Uj1,---,Us) € R” is the rank-reduced
representation of x;.
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Rank-2 Truncated SVD: Visualization

Let X = Zle o; U;V.". and the denote ith row vector of X;, by 7.

e Axis: V; (horizontal) and V5 (vertical)

e Interpretations of the Axis:

V1 = (’Ull, ce ,Ulp)T = Z?:l V15€4 and ‘/2 = (1}21, ce 7U2p)T = Z?:l V15€5, where €55
are the standard basis. V; is explained by the covariates's names of the data and the
associated coefficients (vj1,- -, vjp).

(ex) Suppose that V3 = (0.7101, —-0.7101,0,---,0), X;: GDP, X5 : interest rate, then V;
is the weighted sum of GDP and interest rate with the weight (0.7101, —0.7101).

e Poisiton of i;r (UlUil,O'QUZ‘Q).
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