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Things to know

basic operation of matrix
e spanning space, null space
e projection and geometry

e linear map and matrix
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Matrix Calculus

Differentiation w.r.t vector or matrix
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Determinant

The determinant of A is the volume of parallelogram in R? derived of A:

(a+c.b+d)

1412413
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Determinant
If vectors in A are linearly dependent, the volume of the parallelogram is zero, and vice versa.
The following statement is equivalent. Let A be a square matrix.
° det(A) =5 (0
e A is full rank;
® aj,---,ap, column vector of A , are linearly independent.
Properties of determinant
A, B are p X p matrix.
o det(A) = det(AT)
o det(cA) = cPdet(A)
o det(AB) = det(A)det(B)
o If A=diag(ay, - ,ap), then det(A) =[}_, a;.
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Let f:x€RP—a'x
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Let f: 2z € RP — 2" Az where A € RPX?
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Let f: X € RP*P 5 Tr(X A) where A € RP*P

ofCx) _ [ T ) g
= —A
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o f: X €RP*P s Tr(X T A) where A € RPXP

of(X) _
“ox
o f:X €RPXP 5 Tr(AX 'B) where A, B € RPXP

of(X) _ - -
0 = —(X7'BAXHT

o f:X € RP*P — log(det(X))

(See the matrix cookbook)
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Solving linear equations

efficient computation with matrix decomposition
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Step 5
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QR decomposition

Let A be n x n squared matrix. Then,
A=QR,
where Q is orthogonal matrix, and R is upper triangular matrix.

application

Assume that A is invertible and consider a linear system
Ax = b.

Then, the system is written by Rx = Qb and the solution x is easily obtained by iterative
computation from x; to z,,.

Department of Statistics, University of Seoul Linear algebra for computational statistics IV 13/32



LU decomposition

Let A be n x n squared matrix. Then,

A=LU

)

where L is lower triangular matrix and U is upper triangular matrix.

remark) Not always exists. (see LU P decomposition)

application

Assume that A is invertible and consider a linear system
Ax =b.

Then, the system is written by LUx = b and the solution x is easily obtained by forward
elimination and backward substitution.
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Cholesky decomposition

Let A be n x n a real-valued symmetric and positive definite matrix. Then,

A=LLT,
where L is a lower triangular matrix.
application
Consider a linear system
Ax =b.

Then, the system is written by LL*x = b, and the solution x is easily obtained by forward
elimination and backward substitution.
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What you should know
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Step 1
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Step 3
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Step 4
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Miscellany*
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Example: signal recovery (naive upperbound) Suppose that D;; is sorted by descending order,
and let \; = D;;. Let Aj_1 > € > )i, and let D be n x p diagonal matrix with

Dy =

. A if1<i<k
0 otherwise.

Define A = UDVT then A is an approximation of A in the sense that Ax ~ Ax.
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|Ax — AXH

UKV X+ -+ Uprpv;xH

p
ez HUjv;rxH (triangular inequality)
i=k

IN

'4
= €Y _|(v]®)[l|U;]| (norm properties)
j=k

p
< e > |III[Iv; U]l (cauchy inequality)
j=k

= e(p—k+1)|x]| (orthogonal matrix)
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Example: spectral norm Consider the problem to obtain

y = max ||Ax]|.
lIx]I=1

Let A; be eigenvalue of AT A and e; be the corresponding eigenvector to \;. Let x = > %

j=14i¢j
with 3°2_, a% =1 (let [[x| = 1), then

P
|Ax|? = XTATAx:XT(Z)\jeje;)X
j=1
P P P
= Z)\j(e;x)—r(e;x) = Z)\jaj < (max \;) Za?
j=1 j=1 j=1
=a; N g

Without loss of generality, let max; A\; = A1 then the equality holds for x = e;, which implies

y = /max; \; (called of spectral norm of A).
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Example: signal recovery (conti.)
(A-A)T(A-4) = (UD-D)V)T(UD-DVT)
= VD-D)'(D-D)'VT,

which means that the largest eigenvalue of (A — A)T(A— A) is less than €2. Hence, the spectral
norm of (A — A) is less than e. and we conclude that ||(A — A*)x|| < €||x]||. Keeping mind of
p — oo (high dimensional case), compare the result with the previous example (HW).
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Example: singular matrix

Let A be symmetric p X p nonnegative definite matrix. Then the following statements are equiv-
alent:

e A is positive definite.
e the minimum eigenvalue of A is positive.
e A is invertible.

o det(A) #0

When det(A) = 0 then we call A is singular.
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Let E be p x p orthogonal matrix. Then, det(E)? = 1 since det(E)? = det(E)det(E") =
det(EE") = det(I) = 1. By eigendecomposition A = EDE", then

»
det(A) = det(EDE ") = det(E) det(D) det(ET) = H .

Note that the geometric meaning of determinant is volume. If A is covariance matrix, then
det(A) can be regarded as the volume of A. Moreover, each eigenvalue of A; plays a role of the
length of edge of p-dimensional rectangle.
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Example: Generalized Inverse Matrix

Consider a linear system
Ax =y,

where A is n xm matrix and y is n dimensional column vector. If A is invertible, then x = A~ y.
When, however, A is not invertible (singular or n # m), how do we figure out the solution of

the linear system?

e The solution is a linear map of y through £ : R™ — R™.

e y is the image of A.
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Idea of constructing a generalized inverse

If A is invertible (m = n), then the solution of the linear system is the image of linear map
L :R™ — R™ of y. So, we expect that there exists m x n matrix such that x = Gy. Denote
the solution by x and let G be m x n matrix. Then,

Ax =y = GAXx = Gy.
Suppose that AGA = A, then we also obtain
A(GAXx)=Ax=y.

Here, we know that GAX is the solution of Ax = y and GAX = Gy. Therefore, if we find
such a G then Gy is a solution of the linear system.
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Generalized inverse matrix
Let x = Gy where G is m x n matrix. If AGA = A, then X is a solution of the linear system.

The G is called of the generalized inverse matrix of A, and it may not be unique. But the
Moore-Penrose pseudo-inverse matrix, a special version of generalized inverse, is unique.
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Properties of generalized Inverse

Let G be a generalized inverse of X7 X . The following statements hold.

e G is also a generalized inverse of X7 X;

e XGXTX =X:ie. GXTisa generalized inverse of X
e XGXT is invariant to G;

e XGX7T is symmetric, whether G is or not.

When G is the penrose inverse of X7 X and X is the penrose inverse of X, then GXT = X+
(see the reduction of Hermitian case in the penrose inverse matrix).
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example
Let XTXB = X"z and X is the penrose inverse of X. Then,
XB=XX"z.
Proof) Let (X7 X)* be the penrose inverse matrix. Then
X(XTX)*XxTXB=X(XTxX)* X2

The LHS is X((X7X)"XT)X8 = XX+t X3 = X and the RHS is X((X7X)"XT)> =
XXtz
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