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Introduction

ADMM for non-convex problems

e Focusing on cases in which the individual steps (2-update, z-update) can be carried out
exactly.

e Even in this case, ADMM need not converge (when it does converge, it need not converge
to an optimal point).

o ADMM converges to different points, depending on the initial values 2%, 2%, y° and the

parameter p.
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Definition 1 (Bi-convex problem)

min F(z,2) (1)
subject to G(z,z)=0

where

o [':R" xR™ — R is bi-convex
(convex in x for each fixed z and convex in z for each fixed x).

o G:R" xR™ — RP” is bi-affine
(affine in x for each fixed z and affine in z for each fixed z).
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Scaled ADMM form

¢ D = argmin (F(x, 28 4 (p/2)|G(z, 2P + u(k>H§>
2D = argmin (F(a04D, 2) + (p/2)|G®D, 2) + u®)3)
w8 | G pkD) (kD)

e Both the xz-updates and z-updates involve convex optimization problems and are tractable.
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Definition 2 (Nonnegative Matrix Factorization)

min (1/2)|| X — WVH% (2)
subject to Wi; >0, Vi; >0

where the variables W € R™*" and V € R"*P and data X € R"*P. The objective is bi-convex,
and the problem is bi-convex.
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What is NMF?

e The analysis method of high-dimensional
data as it automatically extracts sparse
and interpretable features.

min f($1,$2)

subjec to xo >0

e The method of matrix factorization with

element-wise nonnegative constraints. Figure 1: Sparsity obtained from a positivity
constraint
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Example 3 (Source Appointment Method)

There are n observatories measuring air pollutants. The air pollutants comprise p chemical
species, and there are r sources of pollutant emissions.”

° x;'— = (41, ,:cip) fori =1, -+ ,n where z;; is the amount of the kth measured

chemical at the ith observatory.

e v = (g1, -+ ,vkp) is the (positive valued) chemical profile of the source k.
o w| = (w1, -+ ,w;) fori=1,--- nis the (positive valued) source contribution vector of

the 7th observatory. w;;. denotes the contribution of the source k to the air pollution of
the ith observatory.
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We assume that

T
Tij = g WikVkj + €ij,
k=1
where €;; is an error-variable.

It is written by

X=WV+FE
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Figure 2: Source appointment methods
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Example 4 (Representation learning for image data)

e z] = (z;1, -, ;) is the ith image consisting of p pixels and X € RZ_X” is the dataset of
n images.

e v = (v, - ,vpp) is the feature vector representing the kth specific pattern and
Ve RT” is a feature matrix. V' is called a filter bank consisting of r filters.

e w, = (w1, -+ ,w;) is the encoding vector of the ith image and W € R™*" is a encoding
matrix.

e NMF learns how to combine parts to form a whole (a parts-based sparse
representation).
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Figure 3: NMF learns a parts-based representation of faces
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Example 5 (Application in NLP)

e X € R} is a document matrix whose each row vector denotes the document
represented by p-word frequency.

o V € R*" is a topic matrix whose each row vector denotes the topic (semantic feature)
represented by p-word frequency.

e W e Ryin x ris considered as ‘topics’ proportion matrix.
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Solving NMF by Scaled ADMM

: _ 2
gmin (U)X~ BIE + L(V) + L(W)

subject to B-WV=0

We introduced a new variable X and the indicator function I for element-wise nonnegative
matrices.

0  all elements of V' is non-negative
(V)= .
0o otherwise
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k+1 v k+1 L . _ 2 ik k2
(BMLVERY) = arg min (11X~ Bl + (o/2)|B = WV + UM

Wkl = arg min ||B¥TY — wvEt L UF||%
W>0
UkHL .= pk g pRtl _ pktlyktl

Note that we use the Frobenius norm instead of the Ly-norm.
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e We know that || B||2 b ||bill3 where X = [by,- -+ ,b,)].

e Using this, we can split the first update step across the rows of B and V, and it can be
performed by solving a set of quadratic programs in parallel.

Ot of ) = argming, 5o (|l — bill3 + (p/2)11bs — W*Tv; + uf|13)

fore=1,---,p.

University of Seoul Alternating Direction Method of Multipliers 11 15/32



e In the same way, we can split the second update into the columns of W (quadratic
programs):

k+1
W

= argmin,, |05 —w; VM 4 uf |3

forj=1,---,r.
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Supplementary Note

1. Standard ADMM
2. Augmented ADMM
3. Example(Sparse Fused Lasso)
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When we use ADMM algorithm?

We aim to solve the optimization problem of the following form

Inin f(6) + g(A9), (3)

where f and g are convex functions and A € R™*P,

ADMM algorithm can solve convex problems with constraints such as (3) stably but slowly.
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Using auxiliary variable v, ADMM form of problem (3)

Bl f(O) +9(7), (4)

subject to A0 —~v=0

Updating rules of problem (4)

o1 = argmin (f(H) + gHAG —7F 4+ p7 1|3 ) (5)
0
- p
P = argmin (g(7) + 2114057 —oF + 510" |3),
8!
ak+l — Oék + p(A9k+1 o ,yk+1)7

where « is a dual variable.
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In chapter general patterns of ADMM, we investigated the quadratic objective function f
fl@)=(1/2)z" P +q Tz +r,

and the efficient methods of computing inverse matrix in x-update.

For instance, f is quadratic term of 6 and P and A are diagonal matrix, computing cost of
(P—!—pATA)_l is O(p) by comparison with O(p®) which is general cost of inverse matrix in
r-update.

In general case (4), matrix A has a lot of influence on convergence time.
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Issue

e Many well-known problems like generalized lasso can be written in the same form of (4).

e Unless A is not sparse, computing cost is too expensive in f-update of a high-dimensional
problem(p > n).

How can we get around this difficulty?

University of Seoul Alternating Direction Method of Multipliers 11 21/32



Augmented ADMM

We consider “augmented” variable (v,%) and rewrite problem (4)

i 0
o L (@) +9(7) (6)

. A ~
subject to ((DATA)UQ)H_(ﬁ):O’

where D € RP*P satisfies D = AT A.

Note that the augmented variable 4 and associated constraintally redundant.
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Apply standard ADMM to (6), updating rules are

oF el f(0) + *||A9 7+l (7)
+HI(D - ATA)20 — 5% + p~ 1" |3,

A= argﬂr/nin (g(v) + g\\A9k+1 — v+ p_ldk”%) ) (8)

,.~yk+1 o= (D . ATA)1/291€+1 +p710~ék¢ (9)

O/c—‘,—l o ak + p(A9k+1 _ ,Yk-l-l) (10)

o= &k 4p ((D AT A2 — ~"“) : (11)

where a € R™, & € RP are dual variables.
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Combining (9) and (11) gives @**! = 0. Then plugging (9) into (7), #-update will be rewritten
as

gF 1 = argmin f(6) + §||A9 — ¥+ p7ta|3
9
HI(D — AT A)2(9 - 6%)]I5.

This result cancels out 87 AT Af in f-update.
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grtl = argmin(f(a)+(2ak— T 0+ 2 2(6—6")TD(6 - 9’@))
6

k41 _ : P k+1 k

P = argmin (g(y) + 2114657 =y + 510" |3)
vy

ak+1 . ak + p(AGIﬁLl o ,}/k+1)

Note that

e In 6-update, we compute inverse matrix of D instead of AT A

e Updating rules don't involve the augmented 4 and & at all!
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Theorem 1
Under Standard ADMM assumption, for any matrix D € RP*P satisfying D = AT A and any

positive scalar p > 0, the following update
OF 1 = argmin f(0) + (2o — a1 T A0
0
+§(9 — 9" T D9 — o"),

oftt = aF 4 p(AGFTT — AR

converges in the sense that primal objective functions along the sequence of primal variables
and dual variable converge to the optimal value: f(6) + g(A0%) — infy f(0) + g(Af) and
a— ar.
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Which D should we choose?

D satisfies D = ATA. For a simple choice would be D = 61 with § > ||A[|2, where [|A]2,
denotes the operator norm of A.

Operator norm
Given two normed vector spaces V' and W, linear map A : V — W and operator norm is

| Al op inf{c > 0[||Av|| < ¢||v|| for all v € V'}

{'H ”” veVand v # O}

Well-known lemma
(amaXI — ATA) is a positive semi-definite matrix,

where o,,,, is maximum singular value of ATA.
Therefore we can choose o, for §.
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Example 6 (Sparse fused lasso over a graph)

Let G = (V, &) be a graph, where V is the node set and £ is the edge set. Often, the node set
V represents the features in the model, and the edge set £ represents their relationship.
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Figure 4: Genetic Graph
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Based on such a graph, we consider the following optimization problem

min (1/2)lly = XBIE+ M8l + e D 18— Bjl; (12)
p_/_/ ..
—£(8) (hg)ee
=9(P)

where y € R is the response vector, X € R"*P is a data matrix.

This regularization term g desires the structure where 3; and 3; have a similar or same value in
(i,7) € € and makes (8 sparse.
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I
Write (12) in the form of ADMM with A = o ] and g(y) = A|y1| + A2|y2|, where C'is

matrix associated with graph G and v = i 1 .
72

The constraints are § =, and Cf8 = vs.
For example, assume that p = 3 and there is a connection between the first and second features.
Then

1 0 0

0 1 0

A= ,vi =B and y2 = 1 —
0o o 1™ B Yo = p1— B2
1 -1 0

University of Seoul Alternating Direction Method of Multipliers 11 30/32



The augmented ADMM gives the following updates

Bk+1

ak+1

T

where a = (af ag )T € RP*™ is dual variable.

(pD + X" X) Y (pDB* + X Ty — AT (2aF — oF 1))
Oék + p(Aﬁk_H _ ,yk—O—l)

p<n p>n
stanADMM O(Ncholp2n + Nadmmp2) O(Ncholp3 + Nadmmp2)
3UgADMM O(Ncholp2n + Nadmmp2) O(Ncholn2p + Nadmm [Zm V m])

When p > n, the augmented ADMM gains computation efficiency, which is linear in p(if m <

np).
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Table 1: Computational complexity
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Summary
e The matrix A has a lot of influence on convergence time in ADMM algorithm.

e By using augmented ADMM, we can gain huge computational efficiency.
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