
Constrained Problem and Algorithm I

Jong-June Jeon

October 10, 2023

Department of Statistics, University of Seoul

Department of Statistics, University of Seoul Constrained Problem and Algorithm 1 / 57



Optimality
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Proposition 1 (Global minimum of a convex function)

A local minimum of a convex function is the global minimum.
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(proof) Let f be the objective function and x be the local minimum of f , and C be the feasible

set. Since x is a local minimum of f , there is a ball B containing x with radius R > 0 such that

f(x) ≤ f(z)

for all z ∈ B.
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Let y be the global minimum then

f(x) > f(y).

Since y /∈ B, ‖x − y‖ > R. We set z = (1 − θ)x + θy with θ = R/(2‖y − x‖) then z ∈ B (

because ‖z − x‖ = R/2).

f(z) ≤
convexity

(1− θ)f(x) + θf(y) <
f(y)<f(x)

(1− θ)f(x) + θf(x) = f(x),

which is the contradiction of the definition of x, the local minima in B.
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Proposition 2 (Characterization of local minimum)

Let f be a differentiable convex function on C and x the local minima of f , then

∇f(x)>(y − x) ≥ 0

for all y ∈ B, where B is a ball in C.
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(proof) Since f is convex on C,

f(y) ≥ f(x) +∇f(x)>(y − x)

for all x, y ∈ C.

Suppose that

∇f(x)>(y − x) < 0

for some y ∈ B. Let z(t) = ty+ (1− t)x where t ∈ [0, 1]. Then f(z(t)) is a convex function on

[0, 1]. Then, the optimality condition in the 1-dimensional case,

∂f(z(t))

∂t
= ∇f(z(t))(y − x) = 0,

which is a contradiction.
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(See figure 4.2 on p.139)
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Consider the unconstrained convex problem:

Let y(t) = x− t∇f(x), then it also holds that

∇f(x)>(y − x) ≥ 0

by the convexity of f . That is,

∇f(x)>(y − x) = ∇f(x)>(−t∇f(x)) = −t‖∇f(x)‖2 ≥ 0,

which implies that ‖∇f(x)‖ = 0.
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Proposition 3 (optimality condition with equality conditions)

min f(x)

subject to Ax = b

Let x be a solution of the problem, then

∇f(x)>(y − x) ≥ 0

for all y ∈ {y : Ay = b}.
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(proof) Since x is a solution in a feasible set (Ax = b), we can write y = x+ν where ν ∈ N (A)

So,

∇f(x)>(y − x) = ∇f(x)>ν

for all ν ∈ N (A). If In other words,
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Equivalent problem
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Step 2

A constrained optimization problem may have different formulations that yield the same solution.

In essence, these are referred to as equivalent problems, and a well-formulated equivalent problem

can offer computational advantages to solve the problem. In some instances, it is possible to

transform a constrained problem into an unconstrained one, while in other cases, even when

dealing with a non-convex problem, an equivalent problem can exist that becomes a convex

optimization problem. Therefore, in order to proficiently solve various forms of optimization

problems, the knowledge to formulate equivalent problems is essential. This chapter focuses on

studying general techniques for constructing equivalent problems in the context of optimization.
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Standard form

minimize f0(z)

subject to fi(z) ≤ 0 for i = 1, · · · ,m
hj(z) = 0 for j = 1, · · · , p
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Box constraints

minimize f0(x)

subject to li ≤ xi ≤ ui for j = 1, · · · , p

Then,

minimize f0(x)

subject to li − xi ≤ 0 for j = 1, · · · ,m
xi − ui ≤ 0 for j = 1, · · · ,m
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Maximization

maximize f0(z)

subject to fi(z) ≤ 0 for i = 1, · · · ,m
hj(z) = 0 for j = 1, · · · , p

Then,

minimize −f0(z)
subject to fi(z) ≤ 0 for i = 1, · · · ,m

hj(z) = 0 for j = 1, · · · , p
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Change of variable

If φ : Rn 7→ Rn is one-to-one and D ⊂ dom(φ) then

minimize f0(φ(z))

subject to fi(φ(z)) ≤ 0 for i = 1, · · · ,m
hj(φ(z)) = 0 for j = 1, · · · , p

Let f̃i(z) = fi(φ(z)) and h̃i(z) = hi(φ(z)) then the equivalent problem is given by

minimize f̃0(z)

subject to f̃i(z) ≤ 0 for i = 1, · · · ,m
h̃j(z) = 0 for j = 1, · · · , p
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Slack variable fi(x) ≤ 0 if and only if there exists an si ≥ 0 such that fi(x) + si = 0. Thus, by

introducing slack variables, we can rewrite the optimization problem with inequality constraints

fi(x) ≤ 0 for i = 1, · · · ,m as follows.

minimize f0(z)

subject to si ≥ 0 for i = 1, · · · ,m
fi(z) + si = 0 for i = 1, · · · ,m
hj(z) = 0 for j = 1, · · · , p
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Optimizing over some variables

minimize f0(x1, x2)

subject to fi(x1) ≤ 0 for i = 1, · · · ,m1

f̃i(x2) ≤ 0 for i = 1, · · · ,m2

Let f̃0(x1) = inf{f0(x1, z) : f̃i(z) ≤ 0, i = 1, · · · ,m}, then the equivalent problem is written by

minimize f̃0(x1)

subject to fi(x1) ≤ 0 for i = 1, · · · ,m1
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Examples 1

minimize x>1 P11x1 + 2x>1 P12x2 + x>2 P22x2

subject to fi(x1) ≤ 0 for i = 1, · · · ,m1,

where P11 and P12 are symmetric and positive definite. (See p 134.)
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Let g(x2) = 2x>1 P12x2 + x>2 P22x2 for a fixed x1, then f is convex function. Since ∇g(x2) =
2P>12x1 + 2P22x2, the solution of ∇g(x2) = 0 gives

inf
x2

x>1 P11x1 + 2x>1 P12x2 + x>2 P22x2 = x>1 (P11 − P12P
−1
22 P

>
12)x1.

Thus, the problem is reduced by

minimize x>1 (P11 − P12P
−1
22 P

>
12)x1

subject to fi(x1) ≤ 0 for i = 1, · · · ,m1,
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Constrained Convex problem
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Definition 2 (Linear Optimization problem)

minimize c>x+ d

subject to Gx ≤ h
Ax = b,

where G ∈ Rm×n and A ∈ Rp×n
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min 12x1 + 16x2

subject to −x1 − 2x2 ≤ −40
−x1 − x2 ≤ 30

−x1 ≤ 0, −x2 ≤ 0

figure
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Standard form of Linear programming

minimize c>x

subject to Ax = b

x ≥ 0.

By simplex algorithm [Dantzig, 1947] the problem can be solved. But more efficient algorithms

have been developed.
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Equivalent problem 1 of the linear optimization in the definition

First,

minimize c>x+ d

subject to Gx+ s = h

Ax = b,

s ≥ 0

s is called the slack variable.
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Equivalent problem 2 of the linear optimization problem

Next let x+ = max(x, 0) and x− = max(−x, 0) then x+, x− ≥ 0 and x = x+ − x−. Then,

minimize c>x+ − c>x− + d

subject to Gx+ −Gx− + s = h

Ax+ −Ax− = b,

s ≥ 0, x+ ≥ 0, x− ≥ 0.
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Let c̃ = [c>,−c>]>, b̃ = (h>, b>)>, x̃ = (x+>, x−>, s) and

Ã =

(
G −G I

A −A 0

)
.

Then, the equivalent problem is written by the standard form,

min c̃>x̃

subject to Ãx̃ = b̃, x̃ ≥ 0
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Implementation with python: cvxopt

Problem:

minimize 2x1 + x2

subject to −3x1 + x2 ≤ 1

x1 + x2 ≥ 2

x2 ≥ 0

x1 − 2x2 ≤ 4
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Implementation with python: cvxopt

Problem:

minimize 2x1 + x2

subject to −3x1 + x2 ≤ 1

−x1 − x2 ≤ −2
−x2 ≤ 0

x1 − 2x2 ≤ 4
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http://cvxopt.org/examples/tutorial/lp.html

from cvxopt import matrix, solvers

import numpy as np

c = matrix([2.0, 1.0])

G = matrix([[-3.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]])

h = matrix([1.0, -2.0, 0.0, 4.0])

sol=solvers.lp(c,G,h)

type(sol)

print(sol["x"])

print(sol["s"])

print(sol["primal objective"])

Note that the function argument is solvers.lp(c,G,h,A,b) (see the equivalent problem 1).
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Example 3 (Optimal transportation problem)

• The total supply of the product from warehouse i is ai, where i = 1, 2, · · · ,m.

• The total demand for the product at outlet j is bj , where j = 1, 2, · · · , n.

• The cost of sending one unit of the product from warehouse i to outlet j is equal to cij ,

where i = 1, 2, · · · ,m and j = 1, 2, · · · , n.

• xij is the size of the shipment from warehouse i to outlet j and assume that the total cost

of a shipment is linear in the size of the shipment.

The total outgoing shipment from the warehouse i is given by
∑n
j=1 xij , which should be equal

to or less than bi. The total supply to the outlet j is given by
∑
i=1 xij , which is equal or greater

than aj
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The optimal transportation problem is formulated as the following:

min
i,j

cijxij

subject to
m∑
j=1

xij ≥ ai,∀i

m∑
i=1

xij ≤ bj

xij ≥ 0 for all ∀i, j

Note that the feasibility condition is
∑n
j=1 bj ≤

∑m
i=1 ai.
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Example 4 (Lp-Wasserstein distance between discrete distribution)

Let X ∈ {xi : 1 ≤ i ≤ k1} and Y ∈ {yj : 1 ≤ j ≤ k2} be discrete random variables. Denote

the distribution of X and Y by p and q where pi = Pr(X = xi) and qj = Pr(Y = yj).

Lp-Wasserstein distance between p and q is defined by the following problem.

Wp(p,q) = min
π∈Rk1×k2

∑
i,j

πij |xi − yj |p

subject to
k2∑
j=1

πij = pi, ∀i

k1∑
i=1

πij = qj , ∀j

πij ≥ 0, ∀i, j
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Definition 5 (Quadratic optimization with linear constraints)

minimize (1/2)x>Px+ q>x+ r

subject to Gx ≤ h
Ax = b
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Implementation in python

Problem:

minimize 2x21 + x22 +
1

2
x1x2 + x1 + x2

subject to x1 ≥ 0

x2 ≥ 0

x1 + x2 = 1
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minimize
1

2

(
x1
x2

)>(
4 1/2

1/2 1

)(
x1
x2

)
+

(
1

1

)>(
x1
x2

)

subject to

(
−1 0

0 −1

)(
x1
x2

)
≤ 0

(
1 1

)( x1
x2

)
= 1
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Implementation in python

http://cvxopt.org/examples/tutorial/qp.html

from cvxopt import matrix, solvers

Q = matrix([ [4.0, 0.5], [0.5, 1.0] ])

p = matrix([1.0, 1.0])

G = matrix([[-1.0,0.0],[0.0,-1.0]])

h = matrix([0.0,0.0])

A = matrix([1.0, 1.0], shape = (1,2))

b = matrix(1.0)

sol=solvers.qp(Q, p, G, h, A, b)

print(sol["x"])
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Example 6 (Markowitz model)

Markowitz’s portfolio model suggests optimality based on the variance of the return. The

optimal portfolio is defined by the collection of assets with the minimum variance.

• X = (X1, · · · , Xn)
> is the return rate vector of n assets

• β ∈ Rn: weight vector

• µ = (µ1, · · · , µn)> is the expected return rate vector of n assets.

• µ0: target return rate.

• X>β with 1>β = 1: portfolio.
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(Continue of the example)

Ideal objective function

min Var(X>β)

subject to µ>β = µ0

1>β = 1

β ≥ 0

Note that Var(X>β) = E((X>β)2)− E(X>β)2 = β>E(XX>)β − µ2
0.
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(Continue of the example)

Equivalent problem is

min β>E(XX>)β

subject to µ>β = µ0

1>β = 1

β ≥ 0
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(Continue of the example)

Let xi = (xi1, · · · , xin) for i = 1, · · · ,m and E(XX>) and µ are estimated based on the

observations.

min β>
1

m

m∑
i=1

xix
>
i β

subject to µ̂>β = µ0

1>β = 1

β ≥ 0

Note that the problem can be solved by quadratic programming.
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Definition 7 (Quadratic optimization with quadratic constraints)

minimize (1/2)x>P0x+ q>0 x+ r0

subject to (1/2)x>Pix+ q>i x+ ri ≤ 0 for i = 1, · · · ,m
Ax = b,

where Pi ∈ Sn+.

This problem is called QCQP (See p 153). This problem can be solved by Second-order cone

programming (SOCP), which will be shown.

Department of Statistics, University of Seoul Constrained Problem and Algorithm 43 / 57



Example 8 (Optimal allocation 1 [Phan-huy Hao, 1982])

Let a city be divided into m districts, let its summarized location vector aj ∈ R2, and let wj be

the frequency by which the fire department will be called upon in this district. Find the location

x ∈ R2 for a fire station. In case of fire breaking out in any district j, the frequency-weighted

maximal distance to be covered from the fire station is minimal. So, in case of fire breaking out

in any district j, the frequency-weighted maximal distance to be covered from the fire station is

minimal.
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The objective function is define by

min
x∈R2

max
j=1,··· ,m

w2
j‖x− aj‖2.

This optimization problem is written by QCQP:

min
d∈R,x∈R2

d

subject to w2
j‖x− aj‖2 ≤ d, for j = 1, · · · ,m
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Example 9 (Max-cut problem)

Let G = (V,E) be an undirected graph. For U ⊂ V , let

δ(U) = {uv ∈ E : u ∈ U, v ∈ U}. Here, δ(U) is called the

cut determined by vertex set U . The Max-cut problem is

to solve max{|δ(U)| : U ⊂ V }. This is NP-hard. Instead,

we will be content to find a cut that is sufficiently large. Figure 1: an example of Max-cut 1

[1]
https://en.wikipedia.org/wiki/Maximum cut
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(Continue of the example)

Let xi = 1 if i ∈ U and xi = −1 otherwise. Then the Max-cut problem is solved by

max
1

2

∑
i<j

wij(1− xixj)

|xi| = 1 ∀i,

where wij is a weight of the edge (i, j). Note that wij = wji if (i, j) ∈ E. Assume that W is

symmetric and positive definite where (W )ij = wij . This problem is relaxed by

max
1

2

∑
i<j

wij(1− xixj)

x2i = 1 ∀i,
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(Continue of the example)

Since wij is symmetric and x2i = 1 for all i, the equivalent problem is written by

min
1

2

∑
i,j

xiwijxj

x2i = 1 ∀i,

That is,

min
1

2
x>Wx

‖x‖2 = 1.
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Definition 10 (Second-order cone problem)

minimize f>x

subject to ‖Aix+ bi‖2 ≤ c>i x+ di for i = 1, · · · ,m
Fx = g,

where x ∈ Rn and A ∈ Rni×n, and F ∈ Rp×n

Second-order cone: {(x, t) ∈ Rk × R : ‖x‖ ≤ t}
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QCQP: formulation by SOCP

minimize (1/2)x>P0x+ q>0 x+ r0

subject to (1/2)x>Pix+ q>i x+ ri ≤ 0 for i = 1, · · · ,m
Fx = g,

Since Pi ∈ Sn+, we can write Pi = EiDiE
>
i = (D

1/2
i E>i )

>(D
1/2
i E>i ) by eigen-decomposition.

Let P
1/2
i = D

1/2
i E>i then the QCQP has equivalent to the following problem:
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minimize
1

2
‖P 1/2

0 x+ P
−1/2
0 q0‖2 + r0 −

1

2
q>0 P

−1
0 q0

subject to
1

2
‖P 1/2

i x+ P
−1/2
i qi‖2 + ri −

1

2
q>i P

−1
i qi ≤ 0 for i = 1, · · · ,m

Fx = g,

Then,

minimize t

subject to ‖P 1/2
0 x+ P

−1/2
0 q0‖ ≤ t

‖P 1/2
i x+ P

−1/2
i qi‖ ≤

√
q>i P

−1
i qi − ri for i = 1, · · · ,m

Fx = g.

Note that Pi and P
1/2
i are known.
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Implementation in python

minimize −2x1 + x2 + 5x3

subject to

∥∥∥∥[ −13x1 + 3x2 + 5x3 − 3

−12x1 + 12x2 − 6x3 − 2

]∥∥∥∥ ≤ −12x1 − 6x2 + 5x3 − 12∥∥∥∥∥∥
 −3x1 + 6x2 + 2x3

x1 + 9x2 + 2x3 + 3

−x1 − 19x2 + 3x3 − 42

∥∥∥∥∥∥ ≤ −3x1 + 6x2 − 10x3 + 27
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Implementation in python

https://www.cvxpy.org/examples/basic/socp.html

from cvxopt import matrix, solvers

c = matrix([-2., 1., 5.])

G = [ matrix( [[12., 13., 12.], [6., -3., -12.], [-5., -5., 6.]] ) ]

G += [ matrix( [[3., 3., -1., 1.], [-6., -6., -9., 19.], [10., -2., -2., -3.]] ) ]

h = [ matrix( [-12., -3., -2.] ), matrix( [27., 0., 3., -42.] ) ]

sol = solvers.socp(c, Gq = G, hq = h)

sol["status"]

print(sol["x"])

print(sol["zq"][0])

print(sol["zq"][1])
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Definition 11 (Semidefinite program)

min c>x

subject to x1F1 + · · ·+ xnFn +G � 0

Ax = b,

where G,F1, · · · , Fn ∈ Sk and A ∈ Rm×n.

Here, x1F1+ · · ·+xnFn+G � 0 means that −(x1F1+ · · ·+xnFn+G) is nonnegative definite.
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Definition 12 (Standard form of Semidefinite programs)

min
X

tr(CX)

subject to tr(AiX) = bi, fori = 1, · · · , p
X � 0,

where X,C,A1, · · · , Ap,∈ Sn,
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HW

• KOSPI 200 주가데이터를 모으고 마코위츠 모형을 적합하여라. 평균 수익률은

실행가능영역에서 각자 정하여라.

• 세로축을 평균로그 수익률, 가로축을 포트폴리오의 표준편차로 하는 효율적 경계를

도출하여라.
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