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Optimality
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Proposition 1 (Global minimum of a convex function)

A local minimum of a convex function is the global minimum.
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(proof) Let f be the objective function and z be the local minimum of f, and C' be the feasible
set. Since x is a local minimum of f, there is a ball B containing = with radius R > 0 such that

f(z) < f(2)

for all z € B.
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Let y be the global minimum then
f(x) > f(y).

Since y ¢ B, ||z —y| > R. We set z = (1 — )z + 0y with § = R/(2||y — z||) then z € B (
because ||z — z|| = R/2).

flz) < (A=0)f@)+0f(y) < (1=0)f(z)+0f(z)=f(z)

convexity fw)<f(=)

which is the contradiction of the definition of z, the local minima in B.
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Proposition 2 (Characterization of local minimum)

Let f be a differentiable convex function on C' and x the local minima of f, then
Vi) (y—x) 20

for all y € B, where B is a ball in C'.

Department of Statistics, University of Seoul Constrained Problem and Algorithm 6/57



(proof) Since f is convex on C,
Fy) = f(2) + V(@) (y - o)

for all xz,y € C.

Suppose that
Vi) (y—=2)<0

for some y € B. Let z(t) = ty + (1 — t)a where t € [0,1]. Then f(z(t)) is a convex function on
[0,1]. Then, the optimality condition in the 1-dimensional case,

O1(:(1) _ _
P —Vim)y - =0,

which is a contradiction.

Department of Statistics, University of Seoul Constrained Problem and Algorithm 7/57



(See figure 4.2 on p.139)
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Consider the unconstrained convex problem:

Let y(t) =« — tV f(z), then it also holds that
V@) (y—2)>0
by the convexity of f. That is,
Vi@) (y—2) = Vf(2) (~tVf(z)) = ~t|Vi@)|* > 0,

which implies that |V f(z)]| = 0.
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Proposition 3 (optimality condition with equality conditions)

min fx)

subject to Ax =10

Let x be a solution of the problem, then
Vi) (y—2) 20

for ally € {y : Ay = b}.
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(proof) Since x is a solution in a feasible set (Az = b), we can write y = 2 + v where v € N'(A)

So,
Vi) (y—=z)=Vf)v

for all v € N(A). If In other words,
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Equivalent problem
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Step 2

A constrained optimization problem may have different formulations that yield the same solution.
In essence, these are referred to as equivalent problems, and a well-formulated equivalent problem
can offer computational advantages to solve the problem. In some instances, it is possible to
transform a constrained problem into an unconstrained one, while in other cases, even when
dealing with a non-convex problem, an equivalent problem can exist that becomes a convex
optimization problem. Therefore, in order to proficiently solve various forms of optimization
problems, the knowledge to formulate equivalent problems is essential. This chapter focuses on
studying general techniques for constructing equivalent problems in the context of optimization.
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Standard form

minimize fo(2)
subject to filz) <0fori=1,---,m
hj(z)=0forj=1,---,p
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Box constraints

minimize fo(x)

subject to i<z <wu;forj=1,---,p
Then,

minimize Jfo(z)
subject to li—x; <0forj=1,---,m

xi—u; <0forj=1,---.m
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maximize

subject to

Then,

minimize

subject to

fo(2)
fi(z) <0fori=1,---,m
hj(z) =0forj=1,---,p

—fo(2)
fi(z) <0fori=1,--- ,m
hj(z) =0forj=1,---,p
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Change of variable

If ¢ : R™ — R™ is one-to-one and D C dom(¢) then

minimize fo(o(2))
subject to filo(z)) <0fori=1,---,m

hi(¢(2)) =0forj=1,---,p
Let fi(2) = fi(#(2)) and hi(z) = hi(4(2)) then the equivalent problem is given by

(2)

minimize i
subject to ﬂ(z) <0fori=1,---,m
hy

(Z):Oforj:]-a'“vp
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Slack variable f;(x) < 0 if and only if there exists an s; > 0 such that f;(x) + s; = 0. Thus, by

introducing slack variables, we can rewrite the optimization problem with inequality constraints

fi(x) <0fori=1,--- m as follows.
minimize fo(2)
subject to si>0fori=1,---,m

fi(z)+s;=0fori=1,---,m
hj(z) =0forj=1,---,p
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Optimizing over some variables

minimize fo(z1,22)
subject to  fi(zy) <Ofori=1,--- ,my
fi(zy) <Ofori=1,---,my

Let fo(z1) = inf{fo(z1,2) : fi(z) <0,i=1,---,m}, then the equivalent problem is written by

minimize fo(z1)

subject to  fi(z1) <Ofori=1,--- ,my
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Examples 1

minimize xlTPllxl + 23:1TP121;2 + x;ngxg

subject to filxy) <0fori=1,---,mq,

where Pi; and Py are symmetric and positive definite. (See p 134.)
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Let g(z2) = 2] Piaxa + 29 Paoxo for a fixed z;, then f is convex function. Since Vg(zo) =
2PLx1 + 2Pysx9, the solution of Vg(xy) = 0 gives

igID}szIPniﬁ —+ QIirplzl'Q + x;P22£E2 = IEI(Pll — P12P2_21P1—2)I1.
Thus, the problem is reduced by

N T _1pT
minimize x) (P11 — PiaPoy Ppy)x1

subject to fi(z1) £0fori=1,---,my,
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Constrained Convex problem
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Definition 2 (Linear Optimization problem)

minimize 'z +d
subject to Gz <h
Ax =0,

where G € R™*™ and A € RP*"
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min 1221 + 1625
subject to —x1 — 210 < —40
—x1 — 22 < 30
—r1 <0, =22 <0

figure
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Standard form of Linear programming

minimize ¢z

subject to Ax =1
x> 0.

By simplex algorithm [Dantzig, 1947] the problem can be solved. But more efficient algorithms

have been developed.
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Equivalent problem 1 of the linear optimization in the definition

First,

minimize clz+d

subject to Gr+s=nh
Ax = b,
s>0

s is called the slack variable.
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Equivalent problem 2 of the linear optimization problem

Next let 7 = max(z,0) and 2= = max(—x,0) then 27,2~ > 0 and x = 2 — 2. Then,

minimize et —c'z” +d
subject to Gzt — Gz~ +s=h
Azt — Az~ =b,
s> 0,:c+ >0,z >0.
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min G

subject to Az = 5, >0
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Implementation with python: cvxopt

Problem:
minimize 211 + x2
subject to —3r1 +a0 <1
T+ 19 > 2
z9 >0
1 — 2209 < 4
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Implementation with python: cvxopt

Problem:

minimize  2x1 + xo
subjectto —3x;+x2 <1
—r1— Ty < =2
—xr9 <0
xr1 —2r9 <4
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http://cvxopt.org/examples/tutorial/lp.html

from cvxopt import matrix, solvers

import numpy as np

c = matrix([2.0, 1.0])

G = matrix([[-3.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]1)
h = matrix([1.0, -2.0, 0.0, 4.0])

sol=solvers.lp(c,G,h)

type(sol)

print(sol["x"])
print(sol["s"])
print(sol["primal objective"])

Note that the function argument is solvers.Ip(c,G,h,A,b) (see the equivalent problem 1).
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Example 3 (Optimal transportation problem)
e The total supply of the product from warehouse 7 is a;, where i =1,2,---  m.
e The total demand for the product at outlet j is b; , where j =1,2,--- n.
e The cost of sending one unit of the product from warehouse ¢ to outlet j is equal to ¢;; ,
where ¢ =1,2,--- ;mand 7 =1,2,--- ,n.
e x;; is the size of the shipment from warehouse ¢ to outlet j and assume that the total cost

of a shipment is linear in the size of the shipment.

The total outgoing shipment from the warehouse i is given by Z?:I x;5, which should be equal
to or less than b;. The total supply to the outlet j is given by > ., «;;, which is equal or greater

than a;
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The optimal transportation problem is formulated as the following:
min CijLij

,J

m
subject to inj > a;, Vi
j=1

m
> @i <b;
i=1

x5 > 0 for all Vi, j

Note that the feasibility condition is Y7, b; < >3, a;.
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Example 4 (L,-Wasserstein distance between discrete distribution)

Let X € {z; : 1 <i<Fki}andY €{y; : 1 <j <k} be discrete random variables. Denote
the distribution of X and Y by p and q where p; = Pr(X = z;) and ¢; = Pr(Y = y;).
L,-Wasserstein distance between p and ¢ is defined by the following problem.

Wp(p,q) = min " mlw; — gyl
irj

ﬂ'GRkl X ko

ko

subject toij =p;, Vi
=1

k1
> i =qj, Vj
i=1

g Z Oa V'L,]
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Definition 5 (Quadratic optimization with linear constraints)

minimize (1/2)z"Px+q z+7
subject to Gz <h
Az =b
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Implementation in python

Problem:
minimize QI% + :1:3 + %l’ll’g + 21 + 29
subject to 1 >0
zo >0
1 +x0=1
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minimize

1 P
2\ 5
subject to =1 U il <0
0 -1 [
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Implementation in python

http://cvxopt.org/examples/tutorial/qp.html

from cvxopt import matrix, solvers

= matrix([ [4.0, 0.5], [0.5, 1.0] 1)
= matrix([1.0, 1.0])

= matrix([[-1.0,0.0],[0.0,-1.011)

= matrix([0.0,0.0])

= matrix([1.0, 1.0], shape = (1,2))
= matrix(1.0)

sol=solvers.qp(Q, p, G, h, A, b)

o = B Qv O
|

print(sol["x"])
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Example 6 (Markowitz model)

Markowitz's portfolio model suggests optimality based on the variance of the return. The
optimal portfolio is defined by the collection of assets with the minimum variance.

e X =(Xy,---,X,)" is the return rate vector of n assets

e 3 € R™: weight vector

o p=(p1,--+ ,un) " is the expected return rate vector of n assets.

1o target return rate.
X T with 178 = 1: portfolio.
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(Continue of the example)

Ideal objective function

min Var(X T B)
subject to ©' B =po
1'8=1
B>0

Note that Var(XT8) = E(XT8)2) — E(X )2 = BTE(XX )8 — 1i2.
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(Continue of the example)
Equivalent problem is
min  BTE(XX )3
subject to w8 =po
1"8=1
B=>0
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(Continue of the example)

Let #; = (w41, -+ ,@4,) for i = 1,--- ,m and E(XXT) and u are estimated based on the
observations.

m

1
. T T
min B — Elmixi B
1=

subject to 278 = po
1"T8=1
>0

Note that the problem can be solved by quadratic programming.
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Definition 7 (Quadratic optimization with quadratic constraints)

minimize (1/2)x T Pox + q4  + 7o
subject to  (1/2)z"Pix+q/x+r; <0fori=1,---,m
Ax =0,
where P; € S7.

This problem is called QCQP (See p 153). This problem can be solved by Second-order cone
programming (SOCP), which will be shown.
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Example 8 (Optimal allocation 1 [Phan-huy Hao, 1982])

Let a city be divided into m districts, let its summarized location vector a; € R?, and let w; be
the frequency by which the fire department will be called upon in this district. Find the location
x € R? for a fire station. In case of fire breaking out in any district j, the frequency-weighted
maximal distance to be covered from the fire station is minimal. So, in case of fire breaking out
in any district j, the frequency-weighted maximal distance to be covered from the fire station is
minimal.
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The objective function is define by

min max w; 2|z — a2

z€R2 j

This optimization problem is written by QCQP:

min d
deR,zcR?
subject to wf-
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Example 9 (Max-cut problem)

Let G = (V, E) be an undirected graph. For U C V', let
0(U)={w e E:uecUveU} Here, §(U) is called the
cut determined by vertex set U. The Max-cut problem is
to solve max{|6(U)| : U C V'}. This is NP-hard. Instead,
we will be content to find a cut that is sufficiently large. Figure 1: an example of Max-cut !

(1]

https://en.wikipedia.org/wiki/Maximum_cut
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(Continue of the example)
Let z; =1 if i € U and x; = —1 otherwise. Then the Max-cut problem is solved by
1
max §Zwij(1 —ximj)

1<j

where w;; is a weight of the edge (4, j). Note that w;; = wj; if (¢,j) € E. Assume that W is
symmetric and positive definite where (1W);; = w;;. This problem is relaxed by

1
max §Zwij(1 = &B3%;)
1<)
x? =1Vi,
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(Continue of the example)

Since w;; is symmetric and 27 = 1 for all i, the equivalent problem is written by
. ]. Z
min = TiW;i; T
g 2 Tilig T
%)
xi =1Vi,
That is,

1
min §xTWx

lz]|* = 1.
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Definition 10 (Second-order cone problem)

minimize flz
subject to Az +billa <]z +difori=1,--- ,m
Fx =g,

where x € R™ and A € R™*"™ and ' € RP*"™

Second-order cone: {(z,t) € RF x R : ||lz|| <t}
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QCQP: formulation by SOCP

minimize (1/2)x" Pox + q4  + 7o
subject to  (1/2)x"Pix+q/x+7r; <0fori=1,---,m

Fr=g,

Since P; € 87, we can write P, = E;D,E; = (D}*E])T(D}/*E]) by eigen-decomposition.
Let Pil/2 = Dil/QEi—r then the QCQP has equivalent to the following problem:
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A 1 - 1 _
minimize iHPOl/za: + P, 1/2q0||2 + 179 — §q0TPO Yq0

1 _ 1
subject to iHPil/Qa: + P 1/2qi||2 +ri——q¢ Pl <0fori=1,---,m

2
Faz =g,
Then,
minimize t
subject to[|Py/% + Py g0 <t
1P + PTY2q < \JaT Plg —rifori= 1, m
Fx=g.

Note that P; and Pil/2 are known.
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Implementation in python

minimize —2x1 + x2 + 5x3
. —13x1 + 3z + 5x3 — 3
bject t < —12z; — 3 — 12
subject to H[ 1221 + 1209 — 6as — 2 }H_ B 6xo + Sx3
—3x1 4+ 6o + 223
z1 + 9z + 223 + 3 < =3z + 622 — 10x3 + 27

—x1 — 1929 + 33 — 42
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Implementation in python

https://www.cvxpy.org/examples/basic/socp.html

from cvxopt import matrix, solvers

¢ = matrix([-2., 1., 5.1)

G = [ matrix( [[12., 13., 12.], [6., -3., -12.]1, [-5., -5., 6.1]1 ) ]

G += [ matrix( [[3., 3., -1., 1.], [-6., -6., -9., 19.], [10., -2., -2., -3.11 ) 1]
h = [ matrix( [-12., -3., -2.] ), matrix( [27., 0., 3., -42.]1 ) 1]

sol = solvers.socp(c, Gg = G, hq = h)

sol["status"]

print(sol["x"])

print(sol["zq"][0])

print(sol["zq"]1[1])
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Definition 11 (Semidefinite program)

T

min CHT
subject to o Fi+ -tz F+G=X0
Ax = b,

where G, Fy,--- ,F,, € S*¥ and A € R™X",

Here, 1 F1 + -+ -+ 2, F,, + G < 0 means that —(z1Fy +- - -+, F,, + G) is nonnegative definite.
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Definition 12 (Standard form of Semidefinite programs)

n}}n tr(CX)
subject to tr(A;X) =b;, fori=1,---,p
X =0,

where X, C, Ay, -+, Ap, € S,
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[§ Phan-huy Hao, E. (1982).
Quadratically constrained quadratic programming: Some applications and a
method for solution.

Zeitschrift fiir Operations Research, 26:105-119.
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