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Applications of constrained optimization
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Example 1 (Linear regression with constraints of positive coefficients)
An average response of a variable y is determined by x; and x5. Denote the ith observation of

y and (x1,22) by y; and (21, x;2). When the positive constraint of a regression coefficient is

required, a linearly contained optimization can be applied.

° (Model) y = Bo + Bix1 + Poxs + €, where B3 >0
e (Optimization problem)

. 1
min m Z(yz — Bo — Br1xi1 — 52%‘2)2

=

1=

o

subject to [Bo >
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(Continue with the example)

Let Y = (y1,--- ,yn) ' and X be the n x 2 data table and 1 € R™ be the one-column vector.
Let X = (1,X) € R™3, 8 = (o, 1, 52), and G = (0,0, —1). Then, the objective function is
written by
Ly - Xg2 = —(v-X8)T(Y - XB)
2n - 2n
1.+ (XTX XTy\ 1
= op7 6~ B+ oYY,
2 n n 2n

and the constraint is written by G < 0.
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(Continue with the example)
Thus, in the QP
e P=X"X/n
e q=-X"Y/nandr=YTY/n
e G=(0,0,—1)eR™and h=0€R
e A=0and b=0
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Example 2 (Logistic linear regression with constraints of positive coefficients)

Modify the example 1 by letting y € {0, 1}. The optimization problem for obtaining the MLE is
given by

min - — Z —¥i(Bo + Brzi1 + Pawiz) + log(1 + exp(Bo + rzi1 + Pawiz)))
subject to Ba 2 O.

Write L(B) = %Z?zl(fylxjﬂ + log(1 +exp(x?6)), where z; = (1,241, 72)" € R® and
ﬂ = (ﬂ(%ﬁlaﬂ?)T S RS'
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(Continue with the example)

The quadratic approximation of L(j3) at ) is given by

F(B;89) = L(BY)+ VL) T (8- BY) + %(ﬂ - BO)TV2L(BW)(8 - BD)
= %BTV%(B(”)B + (VL(B®) - V2L(5<t>)5<t>>T 3

1 1
2 BOT 2133 (YT R® 4 = 3OTy2L(31)5®
+587 VEL(B)BY — VL(BY) 6 + 587 VEL(BT)B
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(Continue with the example)

Thus, in the QP

e P=V2L(BY)
o q=VL(B®) - VEL(BD)0
e G=(0,0,—1)and h=0

With the P, ¢, G and h, we can solve min f(3; 3(*)) with the constraint G < 0.
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(Continue with the example)
Computation of VL(3®) and V2L(Z®): let p(x;) = 1/(1 — exp(z] B®)).

1 n
VL(Y) = o (B(z:) — yi)z: € R®
i=1
VL) = 3 w1 - el € RO
=1

Thus, the P and the ¢ in the QP are computed.
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(Continue with the example)

(algorithm)

1. Set an initial 39 and t = 0
2. B+ < argminf(B; B®) with GB < 0.

3. check the convergence of S+1) If 3(t+1) converges, stop the algorithm. Otherwise,
t < t+ 1 and go to the step 2.
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Example 3 (Linear regression with ordered positive coefficients)

e (Model) y = By + B1x1 + Poxz + €, where 0 < 31 < 35

e (Optimization problem)

. I ¢
min o (Z/z — Bo — Brxs — 52%‘2)2
[
subject to —51 <0
B1—B2<0

There are two constraints given by G < 0, where
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Example 4 (Linear regression with /;-penalty)

o (Model) y = Bo + 121 + B2z2 + €.
o (Optimization problem)

1 n

2n 4
1=1

(yi — Bo — Bizir — Bawiz)® + A(|B1| + |B2]),

where X\ > 0 is a tuning parameter.

Note that the minimizer of 8 depends on the section of A. It is known as the LASSO estimator.
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(Continue with the example)

Note that this example just shows an application of solving the regression problem with [1-penalty.
More efficient algorithms have been developed.

Let B?‘ = max(3;,0) and 8; = max(—0;,0). Then, 3; = BJJT - B;
Bitsg = B wig + B (—ig)-

Let 8= (Bo, B, By » B3+ B3 )" and i = (1, i1, — @i, Tig, —2i2) | and d = (0,1,1,1,1)7. The
objective function is written by

Bil = B} + B and

1
—|Y = XB|>+ X" 8.
2n
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(Continue with the example)

The constraints are B;-”,Bj_ > 0. Thus, GB < 0, where

@
I
o o oo

In QP, to avoid the singular problem (det(X T X) = 0), the term of 7||3||* with a small n > 0
is added in the objective function.
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Example 5 (Fused lasso [Tibshirani et al., 2005]) s e

e (Model) y; = By + j; + €;, where ¢; ~ (0,02).
e (Optimization problem)

) 1 n n
min %Z(yi — o — i)* + A1 Y il
=1

i:1 | \:' T T
. ; W m w m
+A E 1 — M . .
. - |1 = pil, Figure 1: [; fused lasso estimator
=

[RINALDO, 2009]
where A1 > 0 and Ay > 0 are the tuning parameters.
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(Continue with the example)

Generalized lasso [Tibshirani and Taylor, 2011] solves the problem:
1 2
min o[V = XB|12 + N|Dll,

where 8 € R? and D € R™P. Let X = (1,I) € R™*(*Y and D = [D D] ]T, where

o1 -1 0 0O -- 0
T 1 -1
Dy = <0 On> c RHD)x(n+1) 5o Dy = 0 0 0 0 c R(=1)x(n+1)
0, AR ’
0 0 O o 0 --- -1

then the fused lasso estimator is computed by the generalized lasso algorithm.
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Example 6 (Linear regression with a strong heredity)

e (Model) y = By + B1x1 + Poxo + B3x1me + €, where xq, 25 € {0,1}. B3 is nonzero only
when 31 # 0 and B2 # 0. (model restriction: the interaction effect is significant only when

both main effects are significant)

e (Optimization problem)

. I
min % Z;(yz - 50 — Bixin — Pawio — 53%‘1%2)2
=

subject to |B1] + |B2| + 1B83] £ C
B3] < |B1| and |B3| < |Bal-

where C' > 0 is a tuning parameter.
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Example 7 (Non-crossing composite quantile regression)

e (Model) Denote the cdf of y|z by F(:|z). For 0 <7 < - - <7 <1,
F~Y(rx|z) = Bro + Braz1 + - + Brpxp, fork=1,--- K.

The F~!(73|x) is the conditional 7-qunatile function. We simply denote the quantile
regression function ' 31, where & = (1,27)T € RPF1,

e (Optimization problem)

K n
ZZ jjﬁk)a
k: i=1

where p;(z) = 7max(z,0) + (1 — 7) max(—z,0).
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(Continue with the example)

Crossing problem: Let ﬁk be the 7;-quantile regression coefficients. For 7, < 7Tj41
~T 7 ~T 2
X IBI{: > 6k+1

for some Z in the domain of predictors. [Bondell et al., 2010] proposed a reduced version of
inequality constraints to prevent the crossing problem.
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Let 81 =B, and 6; =B; — B,_, for j =2,--- , K. Since ,Bk:Z?:léj

k k

)
Fl(mglz) = Z@'O + O Ga e+ O i)

j=1 j=1
k

= i |9,
j=1
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Theorem 8 (non-crossing constraints [Bondell et al., 2010])

Assume that & € [0,1]P*". If o — >_F_ max(—0y;,0) >0 fork=2,--- , K, then
k k+1

(> 8| <a’ Za forallz € [0,1]P* and k=1,--- K — 1.

(proof) See [Bondell et al., 2010] or [Moon et al., 2021]
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(Optimization problem for estimating non-crossing quantile regression)
1 K n
. ~T
min ﬁ;zgpm(yv — I; Ok)
= 1=

b
subject to Oxo — Zmax(—ékj,o) >0fork=2,--- | K
j=1

Because the feature vectors in the neural network satisfy the bounded condition of by using the
sigmoid activation function, the non-crossing composite quantile linear regression model easily
is extended to the neural network model [Moon et al., 2021].
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Example 9 (Monotone regression)

e (Model) f: R — R, nondecreasing function.

Let k; for j =1,--- ,m be knot point and B;(z) = max(z — k;,0). (The knot points are
pre-determined)
k
—’yO—Q—Z% x), where Z'y]ZOfork—l
Sl

e (Optimization problem)

) 1 n m
apuaa on Z(yi — 7 — Z’YjBy (i)
i=1

k
subject to Z’YjZOfOFk:1,~-,m

j=1
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Appendix

The lasso regression estimator is given by minimizing

n

> (i -z B>+ Bl (1)

=1

1
T o

Ix(B)

(Here, the intercept is not considered in the model.)

Ix(5) is a convex function of (.
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Appendix

Coordinatewise algorithm Let I(51,--- , ;) be (strictly) convex function on RP. If the convex
function is differentiable , the following coordinate algorithm gives a minimizer.

(1) Let £ =0 and set an initial estimator (BYC), - ,Bl(pk))
(2) Forj=1,---.,p
e minimize l(BikH), 200 ¢ ;ﬁtl)ﬂjvﬁﬁ)h 500 o I(,k)) with respect to 3; and let the minimizer
(k+1)
be 3;

(3) kE — k+1 and repeat (2) until the solutions converges.

When the nondifferentiable function is separable, the coordinate algorithm gives the minimizer for
(1) [Tseng, 2001]. This algorithm is known as “shooting algorithm” [Fu, 1998] and is elaborated
by [Friedman et al., 2010].
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Appendix

First, consider the minimizer of the following function.

min az® + br + A|z|
R

for a > 0 and A > 0. Let f\(x) = ax? + bz + \|x|. Compute the minimizer of fy(z).

—L +sign(b), if b > A

argmin,, f(z) = { 0 i 6] < A
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Appendix

First consider the case of b < 0 and —b/2a — A\/2a >0

&

Figure 2: lllustration of ax? + bz + M|z
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Appendix

Consider a one-dimensional objective function

k+1 k+1 k
l/\(ﬁi )7 — 75j 6+17"'7ﬂ;() ))
Let 77 =y (ﬂ(’““l) co ;T{l) 0 B(i)l, . ,(,k’)), then the above objective function is
simply written by
k+1) k+1 k ;
l)\(ﬁi Y ' /3( ) ijﬁj('+)17"' aﬂ[(;k))
1 n
= %;(ﬂﬂ 2:58;)% + A|B;j| + const
1 1<
_ 2\ 32 - A . b
= %(;Lw) 6]’ + (*ﬁ ; 7 " Tij) B + AlBj| + const
a b
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Then, we can apply the minimization algorithm of

min az?® + bz + \|z|
z€R

to the lasso problem sequentially.
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