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Mixture distribution
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Figure 1: (Left) density of data distributions; (Right) Modeling of a two-component mixture
distribution
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Two component mixture
e X|Z =1~ N(u,0%)
O X‘ZZONN(M()’U(%)
e Z ~ Bin(1l,7), 7 € (0,1)

Denote the pdf of normal distribution with mean x and variance o2 by é(+; i, o). Then, the pdf
of (X, Z) is given by

Ifxz(x,2,0) = fxz(z|z) X fz(2)
¢(; 1,07 ) (5 o, 05) ' (1 — m)' =%, (1)

where 6 = (ul,U%,uo,Ugaﬂ)-
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(Density)

PriX<z,Z=2z2) = / O(x; pzy0,)de Pr(Z = 2),

Pr(X<z|Z==z)

PriX<z) = Pr(X<z,Z2=0)+Pr(X <z, Z=1)
= (1—7T)/ ¢(9€;Mo700)d33+7f/ ¢(@; p, 01)dw

= [ [(1 = m)p(x; po, 00) + wP(x; pa, 01)] d
- odf
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The marginal pdf of X is given by
Ifx(x;0) /fxz(w,z;@)du(z)
= 7(x; 1, 07) + (1 = 7)o(; po, 03),

where u(z) is a counting measure on {0,1}.

University of Seoul EM algorithm for mixture models 5/50



Likelihood and MLE
Let {(x;, zi)}7, be lID random sample of (X, Z). (1) defines the (complete) loglikelihood as

n

Fo) = 3 ( Tog (s ity ) b (U ) Lo (st o)

i=1

zilog(m) 4+ (1 — 2;) log(1 — 71'))
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Assume that z is observed. Let By = {i: z; = 1}, ny = |By|, By = {i : z; = 0} and ng = | By|

then

°0) = Y logp(aspr, o) + Y log dlz; o, o3)

1€B1 i€ By

+n1 log(m) + no log(l — 7),
where ny = n — ny. Thus, the loglikelihood function is separable, and the MLE is given by

T1 =Y ep, Ti/m1 and 67 =Y, p (xi — Z1)*/ma

[ ] I[L1 =
® [ig=1Tg= ZiGBO Jli/no and 5’8 = EieBo(‘ri = i’o)Q/no
o 7 =mn1/(n1+np)
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Likelihood and MLE

Suppose that {z;} is missing. What is the MLE of the considered model? Note that the likelihood
should be defined by observations. The (observed) likelihood is given by

—.

©
I
iy

Lo(9) = f(@i;0)

(w(w; p1,07) + (1 — m) (w45 o, 03)) -

Il

«
Il
—

The maximizer of L°(0) is the MLE of the model. Hereafter, denote log L°(6) by °(0).
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Difficulty of obtaining the MLE
Likelihood function of the normal mixture model has numerous poles, points not defined with

an infinite limit.

e Choose an arbitrary j € {1,---,n} and let u; = z;. In addition fix uo and o2 > 0
arbitrary.

e As 02 — 0 we know that

o fori=j

2
s ) — . .
l@i; p, 01) { 0 fori#j,

which implies

(md(@i; p1, 0F) + (1 = m) (235 o, 05)) — 00
1

n

(2

That is, there exist at least n more poles in the likelihood function.
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Difficulty in obtaining the MLE
The objective function is nonconvex with numerous saddle points. This problem is closely related

to the identifiability problem on indexing the groups (or clusters).

e Suppose that we have estimate 7 = 0.3, i1 = 1, fi9 =0, 01 = 1 and 0¢ = 1.5. But even if
we let 71 =0.7, i1 =0, jig =1, 01 = 1.5 and g9 = 1, the likelihood does not change.
This means that the model is not identifiable.

e There are M! combinations of parameter pairs in the M component mixture problem.
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EM algorithm for Two-component mixture

In the complete loglikelihood, we treat z; as a random variable. For convenience, consider a

one-sample complete loglikelihood.

() = zloge(zr;u,o7) + (1 - z)log ¢(x1; o, op)
+2z1 log(m) 4+ (1 — z1) log(1 — 7)

Since x1 is observed, ¢(z1;u1,0%) and ¢(x1; po, o) are functions of (w1, 0%, po, o). If we set
a distribution of z; (Bernoulli dist.), we can compute

EI°() = E(z1)log(z1;m,07) +E(1 - 2)log ¢(21; o, o)
+E(21) log(7) + E(1 — 21) log(1 — )

We can maximize El°(0) with respect to 6.
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e Set an initial estimate (*) = (uy, 0%, uo, 02, 7) and t = 0.

e Expectation step: compute Ez |y o) [1°(0)]
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Ezixom[l°(0)] = Z |:(EZ|X,9<i)Zi)10g ¢(xi; 1, 07)
=
+(Ezx 000 (1 — 2:)) log (35 pro, )

+(Ez x,002i) log(m) + (1 — (Ez|x,00 2i)) log(1 — )

Moreover,

(4 i1, 0%)
(i p1,07) + (1 — m)d(xs; o, 02)

Ezix,00 [2;] = Pr(z; = 1|x;) =
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EM algorithm for two-component mixture

e Maximization step: maximize Ez|x g [I°(0)] with respect to 6. Denote E | x g [2i] by 2
simply. Then,

n

EZ|X79<t>,[lc(9)] = |:2i log ¢($1‘3M1’0%)

=1
+(1 — 21) log ¢(xlv Hos O—(QJ)

+z;log(m) + (1 — ;) log(1l — m)|.

The maximizer is given by ji; = ZZL:l W; T4, &f = Z:;l wi(x; — ﬂl)Qv and
T = Zi:l 2%/2?21 21‘ where w; = éz/z;nzl Z%.
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EM algorithm for two-component mixture

e Maximization step: Obtain

6= arg;nax Ezx,00[1°(0)]

and update § — 0+D) and t — t + 1

e Repeat E-step and M-step until the solution converges.
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EM algorithm for two-component mixture

e For each step, the solution achieves higher observed likelihood L°().
e The solution converges a local maximum of the observed likelihood function.

e Varying initial values, we can try to investigate many local maxima.

Note that the EM algorithm is a special case of the MM algorithm since Ez| x [I°(6)] is a majorized
function of the observed likelihood function at the current solution.
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Notation

e z: observed variable
e z: missing (latent) variable
e (z,z): complete variable

e 0: parameter of the density function of (z, z).
Let

;0
fZ|X(Z\33§9) = %

Here, we omit the subscript X, Z in f(z,2;0).

17/50
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Since only z is observed, the (observed) likelihood is defined by
Lo0) = [ [ fx (),
i=1

where ;s are random samples following fx. The MLE is obtained by maximizing log L°(0).
However, maximization is frequently difficult due to the form of the loglikelihood function. The
typical case is the normal mixture model.
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EM algorithm seeks to find the maximizer of L°(#). The starting point is the expectation for the
missing variables

First, let Q(0]0(")) be a conditional expectation of the complete loglikelihood for missing values.
Q(016™) = Egzxew [log L°(6)]

= Ezixoo [Z log f (w3, 2;; 9)]
=

— ZEZ 1X;,000 [logf(lmzz, )]

= Z/ log f (w4, 2;0)) f2x (2|24 01 dz
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Let Z ~ Logis(p1,1) and X = I(z > 0). Let Y = (X, Z)

e PDF of Y: simply denote pdf of z by f(z).
f(@,2) = f()(z <a,x=0)+ f()I(z 2,2 = 1)
e Suppose that z is observed. Q(6]6")):

fz1x(2z) = fﬁg(cg)

fRIz<z,z=0)+ f(2)[(z > z,x=1)
Pr(X =x)

(When X =0, Z|X follows the truncated logistic distribution.)
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EM algorithm

Set an intial 6@ for t = 0.
E step: Compute Q(A|6®).
e M step: Maximize Q(A|#™) w.r.t. 6, and update 8(*+1) as the maximizer and let t — ¢+ 1.

Repeat the E step and M step until the solutions converge.
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Example 1 (Peppered moths)

The peppered moth's coloring is believed to be determined by a single gene with three possible
alleles: C, I, and T. C' is dominant to I and I is dominant to 7". Thus,

(Phenotype)

o C:CC, CI, CT,
o [: I, IT
o T.TT.

We can only observe ng, ny, np among n = ng + ny + np. Our goal is to estimate the
proportion of moths with each genotype.
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Figure 2: Pappered moths: Carbonia(left), insularia(middle), typical(right)
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Let z = (ncc,ner, nersnir, nrr, nrr) and x = (ne,ny,nr). Let the allele frequencies in the
population be pe, p; and pr and assume that the probabilities of genotype CC, CI, CT, II, IT, TT
are given bt pZ, 2pcpr, 2pcpr , P3, 2prpr and pZ. Note that z is not observed. The complete

likelihood (z, z) is given by

Pr(X = 2,7 = 2) "
T = :L'7 == =
ncc nNcr ncr nir T NTT
X (pg)"° (2pcpr)™°" (2pepr) ™™ (7)™ (2p107)™ ™ (P7)"TT

xI(ncc + ner + ner = ne,nir +npr = ng,ner = nr)
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1°0) = logPr(X =a,Z=z2)

2ncc log(pe) + neorlog(2pepr) + ner log(2pepr)
+2n71log(pr) + nir log(2prpr) 4 2nrr log(pr) + const.
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(E-step)

For given pc, pr1, Pr
E(Ncc|nc,nr,nr) =
E(ch\nc,nj,nT) =

E(Ncr|ne,nr,nr) =

University of Seoul

ne X pg
D% + 2pcpr + 2Pchr
nc X 2pcpr
PE + 2pcpr + 2Pcpr
nc X 2pcpr
P2 + 2pchr + 2poPr
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~2
ny Xp
E(Nirlnc,nr,nr) = L

P? + 2prpr
E(Nir|nc,nr,nr) m
E(Nrr|nc,nr,ny) = nrpp
Denote the conditional expectations by ¢; for j =1,---,6 in turn. Thus,
Q(0]0) = Ezx1°(0) = 2c1log(pc) + c2log(2pepr) + c3log(2pepr)

+2¢4log(pr) + ¢5log(2prpr) + 2¢6 log(pr) + const.
= (2c1+c2+c3)logpe + (c2 + 2¢4 + ¢5) log pr
+(c3 + ¢5 + 2¢6) log(pr) + const’
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(M-step)

max (2¢1 + ca + c3) log pc + (2 + 2¢4 + ¢5) log pr + (e3 + ¢5 + 2¢6) log(pr)
subject to pc+pr+pr=1

pc,pr,pr 20
po = 2¢y +602 +c3
2> 516
b = ca + 2604 +c5
22]’:1 &
pr = l—pc—Dpr
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Example 2 (Risk for HIV infection)

Suppose 1500 gay men were surveyed and each was asked how many risky sexual encounters in
the previous 30 days.

Encounters, k 0 1 2 3 4 5 6 7 8
Frequency, n, 379 299 222 145 109 95 73 59 45
Encounters, k 9 10 11 12 13 14 15 16

Frequency, n, 30 24 12 4 2 0 1 1 -

Table 1: Frequency table
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Because a single Poisson distribution does not fit the data well, we consider a Poisson mixture
model consisting of three populations: ¢ = 1 denotes the population 1 following poisson (u1);
¢ = 2 denotes the population 2 (more risky group) following poisson (u2); ¢ = 3 denotes
zero-response group to a sensitive question.
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Model

e ylc =1~ Poisson(p1)

e y|c =2 ~ Poisson(uz)

e Pr(ylc =3) =I(y = 0) (Dirac measure)
e Pr(c=j)=m; for j =1,2,3.

Denote the conditional distribution of y|c = j by f;(y)
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Likelihood

3
Pr(y=0) = ZPr(y = 0l = j) Pr(c = j)

= myexp(—p1) + moexp(—ps2) + 73

For k > 1,
3
Priy=k) = ZPr(y =klc = j)Pr(c=3)
j=1
k _ k _
_ exil( m) B3 exig pi2)
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Likelihood
Let By = {i: y; = k} then

p, po, ™1, o, ms) = Y logPr(y = y;)

i=1
= Z log Pr(y = vy;) + Z log Pr(y = v;) + - -

i€Bo i€B)

= Z log Pr(y = 0) + Z logPr(iy=1)+---
1€Bg 1€ B,

= Z log Pr(y = 0) + Z Z log Pr(y = k)
i€By k=14i€By
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Loglikelihood

Let n, = | Bg| then the loglikelihood is given by

Upa, p2, m1,m2,m3) = mglog (m1 exp(—p1) + m2 exp(—p2) + m3)
i keX = keX —
+anlog<mu1 if M1)+7T2N2 2? u2)>’
[5=Il

where M1, lo, T, T2, T3 > 0 and m + 7y + w3 = 1.

ny for k > 0 are given in Table 1.
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Maximum Likelihood Estimator

(ﬂ17ﬂ27ﬁ177}257}3) = argmax Z(H17M277T1»7T2a773)
subject to 1, o, Ty, T2, T3 > 0

T + My + 73 = 1.
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Complete loglikelihood

Let a complete observation be (y;,¢;) for i =1,---  n. Then

Pr(y=yi,c=¢) = Pr(y=ylc=c)Pr(c=c)
(1 fu () =D (o o (i) 1= (s £ () (=Y.

The complete loglikelihood is given by

1°(p1, p2, ™1, m2) ZZI J)(log m; + log f;(yi))

=1 j=1
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Let By, = {i:y; = k} then

oo 3
(s, paymyme) = Y>> I(e; = j)(logm; + log f;(y:))

k=0i€By, j=1

0 3
= >3 M =) (logm; + log (k)

k=0i€By, j=1

= Z Z ( 1)(log m + klog g — p1 — log k')

k=01i€By
+I(¢; = 2)(logma + klog g — po — log k)

+I(Ci = 37 5= O) log(ﬂ'g)> )

where m3 = 1 — 11 — 7o.
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(conditional prob.)

Pr(y;, =0lc; = 1) Pr(c; = 1)
3 g i
> j=1 Pr(yi = Ole; = j) Pr(c; = j)
71'16_#1
mieTH + maeTH2 Ty
7T26_p’2

Pr(c; = 1ly; =0) =

PY(Ci == Q‘yz = 0) = Te M 4+ moe~H2 + g
3

Pr(Ci = 3‘% = O) = me H 4+ moe~H2 4 g
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(conditional prob.)
For k >1
Pr(y; = kle; = 1) Pr(c; = 1)

Pr C; = 1 i = k = G
( £ ) 2;21 Pr(y; = kle; = j) Pr(ci = j)

_ ﬂ'lullce*“l
TipfeTM + mppfeh
Pr(ci = 2|y1 = k) = 1- PI‘(CZ‘ = 1|yz = ]f)
Pr(c; =3lyi=k) = 0
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(E-step)

Bejy (19(p1, pro, 71, T2, 3))

oo &
= 33 Y BU(ei = j)ly = k)(log m; + log f;(k))

k=04i€ By j=1

= no(PT(C1 = 1|y = 0)(log 71 — p1) + Pr(c1 = 2[ys = 0)(log 2 — p1)
+Pr(c; = 3|y1 = 0) log 773)

+ZM(PY(61 = 1|y = k)(log m1 + klog 1 — p11)
k=1

+Pr(cy = 2[y1 = k)(log 72 + klog pa — Mz))

—“+const.
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(E-step)
For a given ,ugt),,ugt),wgt),ﬂét),ﬁét), denote ¢ = Pr(e1 = jly1 = k), which is a real number

computed by the conditional prob.

Ec\y(lc(ﬂh M2, 71, T2, 7T3))

= noélo(log T — /,61) + noégo(log Ty — ,ug) + ngcsp log s

+an61k(log7ﬁ + klog 1 — pa) + anczk(log@ + klog pa — p2)

k=1 k=1
= (Z nk@m) log m1 + (Z nké%) log 72 + no¢30 log 73
k=0 k=0
(Z knk51k> log p1 — (Z nkélk> p1 + (Z knk@%) log p12 — <Z nkézk> M2
k=0 k=1 k=0 k=1

University of Seoul EM algorithm for mixture models 41/50



(E-step) In summary,

Eey (1°(p1, p2, m1, w2, 3))
= s1logmy + splogma + s3logmz + sqlog g — sspu1 + se log g — s7ps,

oo ~ o0 ~ A o0 A
where s = > o MkClk, S2 = > b0 MkCor and s3 = nglsg, s4 = > b0 FniCik, 85 =
o0 A o0 A o0 A
D b1 NkCiky 56 = D _p_o kNkCok, and sy = )~ | npCog.
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(M-step)

Since E, (I°(p1, p2, w3, 71, m2)) is separable, (71,72, 73), 11 and o are independently obtained.

T = s /(14 82+ s3), m0TY =s5/(s1 452 +53), wETY =53/(s1+ 52+ 53)
pi Y = safss, bt = se/st
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Convergence
Note that
log fx (x;0) = log f(x, 2;0) — log fz|x (z|z; 6)

Therefore,

Ez x,00 [log fx(z;0)]
= Egxem [log f(z,20)] — Ezx e [log fzx(z]x;0)] .

Note that log fx (z|0) = Ez|x g [log fx (;0)].
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Convergence

So, we can write that
log fx(z;0) = Q(6]6")— H(00"),
where H(0|01) = E x o) (log fz1x (z]a;0)].

Actually,

f(2lz;6%))

KL(fZ|X(Z|T/»e(t))||fZ|X(Z\9U%9)) = EZ\(X,QU)) log 72z 0)

= Egzx,0 log f(z|z, o) — H(9]6™) >0

(KL divergence: the equality holds when § = #(*))
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So that

log fx (;0) + Ezx g0 log f(z]z,0))
Q(016®) + Bz x g0 log f(z|z,01) — H(6]0®))
Q(010))

Y

That is, Q(A|0®)) — Ez x,0m log f(z|z, 0(®) is the minorized function of log fx (x;6). Because
Ez x,00 log f(z|z,6®) is constant, the maximization of Q(#|0*)) increases log fx (z,6).
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(Similar results:) We will investigate H(0®[0®)) — H(0|0®)) > 0 for all 6.

H(OW])0®) — H(0)0D)
= Ezxo0 [long\x(ZIwﬁ(“) —long‘X(z|ac,9)}

_fax(+]z,0) 0
/_log {fZ|X(ZQ:;9(t))} fz1x (2|z;0")dz

> —log/fZ|X(Z\l‘79)dZZO-

(The last inequality holds from Jensen's inequality. Explain the inequality through the maximum
likelihood method.)

Therefore, we know that —H (9|0®)) > —H(#M|0®)) for an arbitrary 6
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Consider an arbitrary (1) satisfying
QU1 > Q0 ™16),
then
Q(g(t+1)|9(t)) _ H(g(t+1)|g(t)) > Q(g(t)w(t)) _ H(@(t)w(t)),
which is rewritten by
log fx (x]6"+V) > log fx («[6").

We can find a sequence of (!} where observed (log)likelihood is increasing.
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Since —H(A|0®W) > 0 and —H (W |9®)) = 0, Q(A|0?)) is minorized function of log f(x|) at
6. See the below Figure that illustrates the EM algorithm.

Q(010® )
log f (x|6) —

é(t+2§ (t+3)

() g(t+1) e

Figure 3: Solutions of EM algorithm
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e Derive the MLE of p and ¥ of a multivariate normal distribution. (hint: use the matrix
derivatives)

e Write EM algorithm for a Gaussian Mixture Model (GMM).
e What is the selection method for the optimal number of a Gaussian Mixture Model?

e Discuss the usefulness of model-based clustering compared to distance-based models. (ex:
when the categorical variables are included in the data, how to apply the K means
clustering in the case? In addition, refer to navie bayes method.)

e Submit Python code for the normal mixture model.

e For a convergence criterion, investigate the sensitivity of results according to the selection
of initial values.
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