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Mixture distribution

Figure 1: (Left) density of data distributions; (Right) Modeling of a two-component mixture

distribution
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Two component mixture

• X|Z = 1 ∼ N(µ1, σ
2
1)

• X|Z = 0 ∼ N(µ0, σ
2
0)

• Z ∼ Bin(1, π), π ∈ (0, 1)

Denote the pdf of normal distribution with mean µ and variance σ2 by φ(·;µ, σ). Then, the pdf

of (X,Z) is given by

fX,Z(x, z; θ) = fX|Z(x|z)× fZ(z)

= φ(x;µ1, σ
2
1)zφ(x;µ0, σ

2
0)1−zπz(1− π)1−z, (1)

where θ = (µ1, σ
2
1 , µ0, σ

2
0 , π).
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(Density)

Pr(X ≤ x, Z = z) =

∫ x

−∞
φ(x;µz, σz)dx︸ ︷︷ ︸

Pr(X≤x|Z=z)

Pr(Z = z),

Pr(X ≤ x) = Pr(X ≤ x, Z = 0) + Pr(X ≤ x, Z = 1)

= (1− π)

∫ x

−∞
φ(x;µ0, σ0)dx+ π

∫ x

−∞
φ(x;µ1, σ1)dx

=

∫ x

−∞
[(1− π)φ(x;µ0, σ0) + πφ(x;µ1, σ1)]︸ ︷︷ ︸

pdf

dx
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The marginal pdf of X is given by

fX(x; θ) =

∫
fX,Z(x, z; θ)du(z)

= πφ(x;µ1, σ
2
1) + (1− π)φ(x;µ0, σ

2
0),

where u(z) is a counting measure on {0, 1}.
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Likelihood and MLE

Let {(xi, zi)}ni=1 be IID random sample of (X,Z). (1) defines the (complete) loglikelihood as

lc(θ) =
n∑
i=1

(
zi log φ(xi;µ1, σ

2
1) + (1− zi) log φ(xi;µ0, σ

2
0)

zi log(π) + (1− zi) log(1− π)

)
.
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Assume that z is observed. Let B1 = {i : zi = 1}, n1 = |B1|, B0 = {i : zi = 0} and n0 = |B0|
then

lc(θ) =
∑
i∈B1

log φ(xi;µ1, σ
2
1) +

∑
i∈B0

log φ(zi;µ0, σ
2
0)

+n1 log(π) + n0 log(1− π),

where n2 = n− n1. Thus, the loglikelihood function is separable, and the MLE is given by

• µ̂1 = x̄1 =
∑
i∈B1

xi/n1 and σ̂2
1 =

∑
i∈B1

(xi − x̄1)2/n1

• µ̂0 = x̄0 =
∑
i∈B0

xi/n0 and σ̂2
0 =

∑
i∈B0

(xi − x̄0)2/n0

• π̂ = n1/(n1 + n0)
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Likelihood and MLE

Suppose that {zi} is missing. What is the MLE of the considered model? Note that the likelihood

should be defined by observations. The (observed) likelihood is given by

Lo(θ) =

n∏
i=1

f(xi; θ)

=

n∏
i=1

(
πφ(xi;µ1, σ

2
1) + (1− π)φ(xi;µ0, σ

2
0)
)
.

The maximizer of Lo(θ) is the MLE of the model. Hereafter, denote logLo(θ) by lo(θ).
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Difficulty of obtaining the MLE

Likelihood function of the normal mixture model has numerous poles, points not defined with

an infinite limit.

• Choose an arbitrary j ∈ {1, · · · , n} and let µ1 = xj . In addition fix µ0 and σ2
0 > 0

arbitrary.

• As σ2
1 → 0 we know that

φ(xi;µ1, σ
2
1)→

{
∞ for i = j

0 for i 6= j,

which implies

n∏
i=1

(
πφ(xi;µ1, σ

2
1) + (1− π)φ(xi;µ0, σ

2
0)
)
→∞

That is, there exist at least n more poles in the likelihood function.
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Difficulty in obtaining the MLE

The objective function is nonconvex with numerous saddle points. This problem is closely related

to the identifiability problem on indexing the groups (or clusters).

• Suppose that we have estimate π̂ = 0.3, µ̂1 = 1, µ̂0 = 0, σ1 = 1 and σ0 = 1.5. But even if

we let π̂ = 0.7, µ̂1 = 0, µ̂0 = 1, σ1 = 1.5 and σ0 = 1, the likelihood does not change.

This means that the model is not identifiable.

• There are M ! combinations of parameter pairs in the M component mixture problem.
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EM algorithm for Two-component mixture

In the complete loglikelihood, we treat zi as a random variable. For convenience, consider a

one-sample complete loglikelihood.

lc(θ) = z1 log φ(x1;µ1, σ
2
1) + (1− zi) log φ(x1;µ0, σ

2
0)

+z1 log(π) + (1− z1) log(1− π)

Since x1 is observed, φ(x1;µ1, σ
2
1) and φ(x1;µ0, σ

2
0) are functions of (µ1, σ

2
1 , µ0, σ

2
0). If we set

a distribution of z1 (Bernoulli dist.), we can compute

Elc(θ) = E(z1) log φ(x1;µ1, σ
2
1) + E(1− zi) log φ(x1;µ0, σ

2
0)

+E(z1) log(π) + E(1− z1) log(1− π)

We can maximize Elc(θ) with respect to θ.
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• Set an initial estimate θ(0) = (µ1, σ
2
1 , µ0, σ

2
0 , π) and t = 0.

• Expectation step: compute EZ|X,θ(t),[l
c(θ)]
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EZ|X,θ(t) [l
c(θ)] =

n∑
i=1

[
(EZ|X,θ(t)zi) log φ(xi;µ1, σ

2
1)

+(EZ|X,θ(t)(1− zi)) log φ(xi;µ0, σ
2
0)

+(EZ|X,θ(t)zi) log(π) + (1− (EZ|X,θ(t)zi)) log(1− π)

]
Moreover,

EZ|X,θ(t) [zi] = Pr(zi = 1|xi) =
πφ(xi;µ1, σ

2
1)

πφ(xi;µ1, σ2
1) + (1− π)φ(xi;µ0, σ2

0)
.
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EM algorithm for two-component mixture

• Maximization step: maximize EZ|X,θ(t),[l
c(θ)] with respect to θ. Denote EZ|X,θ(t) [zi] by ẑi

simply. Then,

EZ|X,θ(t),[l
c(θ)] =

n∑
i=1

[
ẑi log φ(xi;µ1, σ

2
1)

+(1− ẑi) log φ(xi;µ0, σ
2
0)

+ẑi log(π) + (1− ẑi) log(1− π)

]
.

The maximizer is given by µ̂1 =
∑n
i=1 wixi, σ̂

2
1 =

∑n
i=1 wi(xi − µ̂1)2, and

π̂ =
∑
i=1 ẑi/

∑n
i=1 ẑi where wi = ẑi/

∑n
i=1 ẑi.
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EM algorithm for two-component mixture

• Maximization step: Obtain

θ̂ = argmax
θ

EZ|X,θ(t) [l
c(θ)]

and update θ̂ → θ(t+1) and t→ t+ 1

• Repeat E-step and M-step until the solution converges.
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EM algorithm for two-component mixture

• For each step, the solution achieves higher observed likelihood Lo(θ).

• The solution converges a local maximum of the observed likelihood function.

• Varying initial values, we can try to investigate many local maxima.

Note that the EM algorithm is a special case of the MM algorithm since EZ|X [lc(θ)] is a majorized

function of the observed likelihood function at the current solution.
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Notation

• x: observed variable

• z: missing (latent) variable

• (x, z): complete variable

• θ: parameter of the density function of (x, z).

Let

fZ|X(z|x; θ) =
f(x, z; θ)

fX(x; θ)
.

Here, we omit the subscript X,Z in f(x, z; θ).
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Since only x is observed, the (observed) likelihood is defined by

Lo(θ) =

n∏
i=1

fX(xi),

where xis are random samples following fX . The MLE is obtained by maximizing logLo(θ).

However, maximization is frequently difficult due to the form of the loglikelihood function. The

typical case is the normal mixture model.
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EM algorithm seeks to find the maximizer of Lo(θ). The starting point is the expectation for the

missing variables

First, let Q(θ|θ(t)) be a conditional expectation of the complete loglikelihood for missing values.

Q(θ|θ(t)) = EZ|X,θ(t) [logLc(θ)]

= EZ|X,θ(t)

[
n∑
i=1

log f(xi, zi; θ)

]

=

n∑
i=1

EZi|Xi,θ(t) [log f(xi, zi; θ)]

=

n∑
i=1

∫
(log f(xi, z; θ))fZ|X(z|xi; θ(t))dz.
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Let Z ∼ Logis(µ, 1) and X = I(z ≥ 0). Let Y = (X,Z)

• PDF of Y : simply denote pdf of z by f(z).

f(x, z) = f(z)I(z < x, x = 0) + f(z)I(z ≥ x, x = 1)

• Suppose that x is observed. Q(θ|θ(t)):

fZ|X(z|x) =
f(x, z)

f(x)

=
f(z)I(z < x, x = 0) + f(z)I(z ≥ x, x = 1)

Pr(X = x)

(When X = 0, Z|X follows the truncated logistic distribution.)
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EM algorithm

• Set an intial θ(t) for t = 0.

• E step: Compute Q(θ|θ(t)).

• M step: Maximize Q(θ|θ(t)) w.r.t. θ, and update θ(t+1) as the maximizer and let t→ t+ 1.

• Repeat the E step and M step until the solutions converge.
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Example 1 (Peppered moths)

The peppered moth’s coloring is believed to be determined by a single gene with three possible

alleles: C, I, and T. C is dominant to I and I is dominant to T . Thus,

(Phenotype)

• C: CC, CI, CT ,

• I: II, IT

• T : TT .

We can only observe nC , nI , nT among n = nC + nI + nT . Our goal is to estimate the

proportion of moths with each genotype.
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Figure 2: Pappered moths: Carbonia(left), insularia(middle), typical(right)

University of Seoul EM algorithm for mixture models 23 / 50



Let z = (nCC , nCI , nCT , nII , nIT , nTT ) and x = (nC , nI , nT ). Let the allele frequencies in the

population be pC , pI and pT and assume that the probabilities of genotype CC, CI, CT, II, IT, TT

are given bt p2C , 2pCpI , 2pCpT , p2I , 2pIpT and p2T . Note that z is not observed. The complete

likelihood (x, z) is given by

Pr(X = x, Z = z) =

(
n

nCC nCI nCT nII nIT nTT

)
×(p2C)nCC (2pCpI)

nCI (2pCpT )nCT (p2I)
nII (2pIpT )nIT (p2T )nTT

×I(nCC + nCI + nCT = nC , nII + nIT = nI , nTT = nT )
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lc(θ) = logPr(X = x, Z = z)

= 2nCC log(pC) + nCI log(2pCpI) + nCT log(2pCpT )

+2nII log(pI) + nIT log(2pIpT ) + 2nTT log(pT ) + const.

University of Seoul EM algorithm for mixture models 25 / 50



(E-step)

For given p̂C , p̂I , p̂T

E(NCC |nC , nI , nT ) =
nC × p̂2C

p̂2C + 2p̂C p̂I + 2p̂C p̂T

E(NCI |nC , nI , nT ) =
nC × 2p̂C p̂I

p̂2C + 2p̂C p̂I + 2p̂C p̂T

E(NCT |nC , nI , nT ) =
nC × 2p̂C p̂T

p̂2C + 2p̂C p̂I + 2p̂C p̂T
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E(NII |nC , nI , nT ) =
nI × p̂2I

p̂2I + 2p̂I p̂T

E(NIT |nC , nI , nT ) =
nI × 2p̂I p̂T
p̂2I + 2p̂I p̂T

E(NTT |nC , nI , nT ) = nT p̂
2
T

Denote the conditional expectations by cj for j = 1, · · · , 6 in turn. Thus,

Q(θ|θ̂) = EZ|X l
c(θ) = 2c1 log(pC) + c2 log(2pCpI) + c3 log(2pCpT )

+2c4 log(pI) + c5 log(2pIpT ) + 2c6 log(pT ) + const.

= (2c1 + c2 + c3) log pC + (c2 + 2c4 + c5) log pI

+(c3 + c5 + 2c6) log(pT ) + const’
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(M-step)

max (2c1 + c2 + c3) log pC + (c2 + 2c4 + c5) log pI + (c3 + c5 + 2c6) log(pT )

subject to pC + pI + pT = 1

pC , pI , pT ≥ 0

p̂C =
2c1 + c2 + c3

2
∑6
j=1 cj

p̂I =
c2 + 2c4 + c5

2
∑6
j=1 cj

p̂T = 1− p̂C − p̂I
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Example 2 (Risk for HIV infection)

Suppose 1500 gay men were surveyed and each was asked how many risky sexual encounters in

the previous 30 days.

Encounters, k 0 1 2 3 4 5 6 7 8

Frequency, nk 379 299 222 145 109 95 73 59 45

Encounters, k 9 10 11 12 13 14 15 16

Frequency, nk 30 24 12 4 2 0 1 1 -

Table 1: Frequency table
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Because a single Poisson distribution does not fit the data well, we consider a Poisson mixture

model consisting of three populations: c = 1 denotes the population 1 following poisson (µ1);

c = 2 denotes the population 2 (more risky group) following poisson (µ2); c = 3 denotes

zero-response group to a sensitive question.
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Model

• y|c = 1 ∼ Poisson(µ1)

• y|c = 2 ∼ Poisson(µ2)

• Pr(y|c = 3) = I(y = 0) (Dirac measure)

• Pr(c = j) = πj for j = 1, 2, 3.

Denote the conditional distribution of y|c = j by fj(y)
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Likelihood

Pr(y = 0) =

3∑
j=1

Pr(y = 0|c = j) Pr(c = j)

= π1 exp(−µ1) + π2 exp(−µ2) + π3

For k ≥ 1,

Pr(y = k) =

3∑
j=1

Pr(y = k|c = j) Pr(c = j)

= π1
µk1 exp(−µ1)

k!
+ π2

µk2 exp(−µ2)

k!
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Likelihood

Let Bk = {i : yi = k} then

l(µ1, µ2, π1, π2, π3) =

n∑
i=1

log Pr(y = yi)

=
∑
i∈B0

log Pr(y = yi) +
∑
i∈B1

log Pr(y = yi) + · · ·

=
∑
i∈B0

log Pr(y = 0) +
∑
i∈B1

log Pr(y = 1) + · · ·

=
∑
i∈B0

log Pr(y = 0) +

∞∑
k=1

∑
i∈Bk

log Pr(y = k)

University of Seoul EM algorithm for mixture models 33 / 50



Loglikelihood

Let nk = |Bk| then the loglikelihood is given by

l(µ1, µ2, π1, π2, π3) = n0 log (π1 exp(−µ1) + π2 exp(−µ2) + π3)

+

∞∑
k=1

nk log

(
π1
µk1 exp(−µ1)

k!
+ π2

µk2 exp(−µ2)

k!

)
,

where µ1, µ2, π1, π2, π3 > 0 and π1 + π2 + π3 = 1.

nk for k ≥ 0 are given in Table 1.
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Maximum Likelihood Estimator

(µ̂1, µ̂2, π̂1, π̂2, π̂3) = argmax l(µ1, µ2, π1, π2, π3)

subject to µ1, µ2, π1, π2, π3 > 0

π1 + π2 + π3 = 1.
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Complete loglikelihood

Let a complete observation be (yi, ci) for i = 1, · · · , n. Then

Pr(y = yi, c = ci) = Pr(y = yi|c = ci) Pr(c = ci)

= (π1f1(yi))
I(ci=1)(π2f2(yi))

I(ci=2)(π3f3(yi))
I(ci=3).

The complete loglikelihood is given by

lc(µ1, µ2, π1, π2) =

n∑
i=1

3∑
j=1

I(ci = j)(log πj + log fj(yi))
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Let Bk = {i : yi = k} then

lc(µ1, µ2, π1, π2) =

∞∑
k=0

∑
i∈Bk

3∑
j=1

I(ci = j)(log πj + log fj(yi))

=

∞∑
k=0

∑
i∈Bk

3∑
j=1

I(ci = j)(log πj + log fj(k))

=

∞∑
k=0

∑
i∈Bk

(
I(ci = 1)(log π1 + k logµ1 − µ1 − log k!)

+I(ci = 2)(log π2 + k logµ2 − µ2 − log k!)

+I(ci = 3, k = 0) log(π3)

)
,

where π3 = 1− π1 − π2.
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(conditional prob.)

Pr(ci = 1|yi = 0) =
Pr(yi = 0|ci = 1) Pr(ci = 1)∑3
j=1 Pr(yi = 0|ci = j) Pr(ci = j)

=
π1e
−µ1

π1e−µ1 + π2e−µ2 + π3

Pr(ci = 2|yi = 0) =
π2e
−µ2

π1e−µ1 + π2e−µ2 + π3

Pr(ci = 3|yi = 0) =
π3

π1e−µ1 + π2e−µ2 + π3
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(conditional prob.)

For k ≥ 1

Pr(ci = 1|yi = k) =
Pr(yi = k|ci = 1) Pr(ci = 1)∑3
j=1 Pr(yi = k|ci = j) Pr(ci = j)

=
π1µ

k
1e
−µ1

π1µk1e
−µ1 + π2µk2e

−µ2

Pr(ci = 2|yi = k) = 1− Pr(ci = 1|yi = k)

Pr(ci = 3|yi = k) = 0
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(E-step)

Ec|y(lc(µ1, µ2, π1, π2, π3))

=

∞∑
k=0

∑
i∈Bk

3∑
j=1

E(I(ci = j)|y = k)(log πj + log fj(k))

= n0

(
Pr(c1 = 1|y1 = 0)(log π1 − µ1) + Pr(c1 = 2|y1 = 0)(log π2 − µ1)

+ Pr(c1 = 3|y1 = 0) log π3

)
+

∞∑
k=1

nk

(
Pr(c1 = 1|y1 = k)(log π1 + k logµ1 − µ1)

+ Pr(c1 = 2|y1 = k)(log π2 + k logµ2 − µ2)

)
+const.
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(E-step)

For a given µ
(t)
1 , µ

(t)
2 , π

(t)
1 , π

(t)
2 , π

(t)
3 , denote ĉjk = Pr(c1 = j|y1 = k), which is a real number

computed by the conditional prob.

Ec|y(lc(µ1, µ2, π1, π2, π3))

= n0ĉ10(log π1 − µ1) + n0ĉ20(log π2 − µ2) + n0c30 log π3

+

∞∑
k=1

nkc1k(log π1 + k logµ1 − µ1) +

∞∑
k=1

nkc2k(log π2 + k logµ2 − µ2)

=

( ∞∑
k=0

nk ĉ1k

)
log π1 +

( ∞∑
k=0

nk ĉ2k

)
log π2 + n0ĉ30 log π3( ∞∑

k=0

knk ĉ1k

)
logµ1 −

( ∞∑
k=1

nk ĉ1k

)
µ1 +

( ∞∑
k=0

knk ĉ2k

)
logµ2 −

( ∞∑
k=1

nk ĉ2k

)
µ2
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(E-step) In summary,

Ec|y(lc(µ1, µ2, π1, π2, π3))

= s1 log π1 + s2 log π2 + s3 log π3 + s4 logµ1 − s5µ1 + s6 logµ2 − s7µ2,

where s1 =
∑∞
k=0 nk ĉ1k, s2 =

∑∞
k=0 nk ĉ2k and s3 = n0ĉ30, s4 =

∑∞
k=0 knk ĉ1k, s5 =∑∞

k=1 nk ĉ1k, s6 =
∑∞
k=0 knk ĉ2k, and s7 =

∑∞
k=1 nk ĉ2k.

University of Seoul EM algorithm for mixture models 42 / 50



(M-step)

Since Ec|y(lc(µ1, µ2, π3, π1, π2)) is separable, (π1, π2, π3), µ1 and µ2 are independently obtained.

π
(t+1)
1 = s1/(s1 + s2 + s3), π

(t+1)
2 = s2/(s1 + s2 + s3), π

(t+1)
3 = s3/(s1 + s2 + s3)

µ
(t+1)
1 = s4/s5, µ

(t+1)
2 = s6/s7.
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Convergence

Note that

log fX(x; θ) = log f(x, z; θ)− log fZ|X(z|x; θ)

Therefore,

EZ|X,θ(t) [log fX(x; θ)]

= EZ|X,θ(t) [log f(x, z; θ)]− EZ|X,θ(t)
[
log fZ|X(z|x; θ)

]
.

Note that log fX(x|θ) = EZ|X,θ(t) [log fX(x; θ)].
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Convergence

So, we can write that

log fX(x; θ) = Q(θ|θ(t))−H(θ|θ(t)),

where H(θ|θ(t)) = EZ|X,θ(t)
[
log fZ|X(z|x; θ)

]
.

Actually,

KL(fZ|X(z|x, θ(t))||fZ|X(z|x; θ)) = EZ|(X,θ(t)) log
f(z|x; θ(t))

f(z|x; θ)

= EZ|X,θ(t) log f(z|x, θ(t))−H(θ|θ(t)) ≥ 0

(KL divergence: the equality holds when θ = θ(t))
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So that

log fX(x; θ) + EZ|X,θ(t) log f(z|x, θ(t))
= Q(θ|θ(t)) + EZ|X,θ(t) log f(z|x, θ(t))−H(θ|θ(t))
≥ Q(θ|θ(t))

That is, Q(θ|θ(t))− EZ|X,θ(t) log f(z|x, θ(t)) is the minorized function of log fX(x; θ). Because

EZ|X,θ(t) log f(z|x, θ(t)) is constant, the maximization of Q(θ|θ(t)) increases log fX(x, θ).
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(Similar results:) We will investigate H(θ(t)|θ(t))−H(θ|θ(t)) ≥ 0 for all θ.

H(θ(t)|θ(t))−H(θ|θ(t))

= EZ|X,θ(t)
[
log fZ|X(z|x, θ(t))− log fZ|X(z|x, θ)

]
=

∫
− log

[
fZ|X(z|x, θ)
fZ|X(z|x; θ(t))

]
fZ|X(z|x; θ(t))dz

≥ − log

∫
fZ|X(z|x, θ)dz = 0.

(The last inequality holds from Jensen’s inequality. Explain the inequality through the maximum

likelihood method.)

Therefore, we know that −H(θ|θ(t)) ≥ −H(θ(t)|θ(t)) for an arbitrary θ
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Consider an arbitrary θ(t+1) satisfying

Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)),

then

Q(θ(t+1)|θ(t))−H(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t))−H(θ(t)|θ(t)),

which is rewritten by

log fX(x|θ(t+1)) ≥ log fX(x|θ(t)).

We can find a sequence of θ(t) where observed (log)likelihood is increasing.
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Since −H(θ|θ(t)) ≥ 0 and −H(θ(t)|θ(t)) = 0, Q(θ|θ(t)) is minorized function of log f(x|θ) at

θ(t). See the below Figure that illustrates the EM algorithm.

Figure 3: Solutions of EM algorithm
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HW

• Derive the MLE of µ and Σ of a multivariate normal distribution. (hint: use the matrix

derivatives)

• Write EM algorithm for a Gaussian Mixture Model (GMM).

• What is the selection method for the optimal number of a Gaussian Mixture Model?

• Discuss the usefulness of model-based clustering compared to distance-based models. (ex:

when the categorical variables are included in the data, how to apply the K means

clustering in the case? In addition, refer to navie bayes method.)

• Submit Python code for the normal mixture model.

• For a convergence criterion, investigate the sensitivity of results according to the selection

of initial values.
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