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Interior Point Methods

Consider a convex optimization problem

minimize fo(z)
subject to filz) <0 i=1,...,m (1)
Az =0,
where fo, ..., fimn : R — R are convex and twice continuously differentiable, A € RP*™ with
rank(A) =p < n.
For simplicity, assume that fq is quadratic and f; for i = 1,--- ,m are linear.
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If Slater’s constraint qualification holds, z* and (\*,v*) € R™ X R? are primal and dual solution
that the follow KKT conditions

Ax* =0, fi(z") < 0,i=1,....m
A >0
Vi) + Y NV )+ AT = 0 (2)
=il
Aifiz) = 0,i=1,....m

Without inequality constraints, the above KKT conditions derive a linear system that can be
easily solved. However, the inequality constraints lead to a different story about the optimization
problem.

University of Seoul Interior Point Method | 4/25



Logarithmic barrier function
Consider an equivalent optimization problem to the original one:

m

minimize  fo(x)+ > I (fi(x)) (3)

i=1

subject to Ax = b,

where
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Note that /_ is not differentiable, which makes the problem computationally prohibitive. Instead,
we use a differentiable function (see Figure 1 on the next page),

I_(u) = —(1/t)log(—u) for t > 0.
The original optimization problem is relaxed by

minimize  fo(z) + Z —(1/t) log(—f;(x)) (4)

subject to Ax =b.

For a large t > 0 the relaxed objective function is well approximated to (3). Moreover, the
second-order approximated algorithm, such as Newton's method, can be applied to solve (4) for
fixed ¢. (see Example 15 in the slide of the dual problem)
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Figure 1: The dotted line displays 7_(u), and the solid curves display I(u). As t increases, I (u)
becomes tighter above f<u)
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Recall the Newton's method applied to (4).

Set an initial (®) for k = 0 where Az*) = b and f;(z*)) < 0.

Obtain the quadratic function g(x|z(*)) by the second order approximation of the

objective function (4) at (%),

o Let 2 = 2(®) + 1 and solve the following problem:

min g(z® + v|z®)
subject Av =0.

(The problem can be easily solved.)

Update and repeat.
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Let ¢(z) = — >, log(— fi(x)) which is called the logarithmic barrier function for problem (1).
Note that
dom(¢) ={z € R" | f; <0,i=1,...,m}.

Then we consider the equivalent optimization problem to (4) as

minimize  tfo(z) + ¢(z) (5)
subject to Ax =b,

and denote the solution by z*(¢). Next we investigate the properties of z*(t).
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Central path

Let z*(t) be a solution of (5). The central path is a collection of xz*(¢) for t > 0. By KKT
conditions (convex objective function with equality constraints),

e (Stationary Condition) There exists a & € R? such that
S 1
0 = tVfo(a* () + ) —7— VSfila*(t) +ATp 6
0 2 @) (©)

e (Feasibility condition) x*(t) is strictly feasible

Az*(t)=b,  fi(z*(t) <0, i=1,...,m;
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Let

1
N=——-————i=1,...,m, v =10/t

C tfilzr (1)

then we will claim that the pair \*,v* dual feasible. (Note that A* and v* depend on t.)

e \* > 0 because f;(z*(t)) <0, i=1,...,m
o Vio(z*(t)) + >, MV fi(z*(t)) + ATv* = 0 implies that z* minimizes the Lagrangian,

Lz, \*,v%) +Z)\ filx) + @) T (Az —b).
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Hence, we know that the dual function associated with (1) is

1nf( +Z)\ filz )T(Axb)>

) + Zkffi(w*(t)) + ()" (Az* () - b)
fo(z™(t)) —m/t.

gA*, ")

The first equality holds by the definition of dual function, and the second equality holds by the
optimality of L(x, A*,v*), and the last equality holds because

NAW0) = —pos i 0) = -1t

(Az* () —b) = O.
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Theorem 1 (suboptimality)

Let p* be the optimal value of (1), then

fo(z*(t)) —p* <m/t.

(proof) Let p* be the optimal value of (1), then g(\*,v*) < p* by weak duality. Thus,
fo@™ () —m/t = g(X", %) < p.

Finally, we obtain fo(z*(t)) — p* < m/t. (z*(t) is no more than m/t-suboptimal)
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The centrality condition (perturbed KKT conditions)

The KKT conditions for a relaxed problem can be understood as a modified KKT condition:

e x = z*(t) is a point on the central path if and only if there exists A = A\*(¢) and v = v*(t)

such that
Ar =0, fi(x) < 0, i=1,...,m
A > 0
Vfolx) + i A\Vix)+ ATy = 0 (7)
- Nifilz) = —=1/t, i=1,....,m

e The complementary slackness condition —\; f;(z) = 0 is replaced by \; f;(z) = —1/t.
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interpretation of the central path

e The inequality conditions are relaxed by a barrier function.

e The associated KKT conditions are relaxed. The complementary slackness condition is
relaxed as

Aifi(x) = =1/t

e The modified problem can be solved by the Newton-Raphson algorithm with equality
constraints.

e The solution to the problem is suboptimal.
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The Barrier method

If we set an upper bound of error as ¢ > 0, we only let ¢ = m /e and solve the modified problem.
However, we encounter the problem between numerical stability and accuracy since the algorithm
becomes unstable for a large t.

(HW) Discuss the above problem related to the convergence of Newton's algorithm.
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Barrier method algorithm

e Given strictly feasible x, t := t > 0, w > 1, tolerance € > 0
e Repeat:
e Centering step : Compute z*(¢) by minimizing tfo 4+ ¢, subject to Ax = b, starting at x
e Update z := z"(t)
e Stopping criterion : quit if m/t < e
e Increase t: t:= ut
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Execution of step 1 as a centering step or an outer iteration

Newton iterations or steps executed during the centering step as inner iterations

e At each inner step, we have a primal feasible point

At each outer step, we have a dual feasible point
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Example 2 (Linear programming)

minimize cx
subject to Az =Db (8)
x>0

where A is p X n(p < n) full rank matrix, ¢ € RP, b € R".

University of Seoul Interior Point Method | 19/25



The objective function with barrier function is given by

minimize B(z,t) = tcTz — Zlog(xi)
i=1
subject to Az =10 (9)

where real ¢t > 0
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The gradient and hessian of (9) is given by

Gradient : V,B(z,t) =tc— X e
Hessian : V2B(z,t) = X2

where X = diag(z1,...,2,), e = (1,...,1)T. The quadratic function is obtained by second-
order approximation near x of the logarithmic barrier function:

n 1
: T , _y—1\T AT -2
min tc' x ;log(z1)+(tc X e) A+ 2A XA
subject to Alz+A)=Db

Note that Az = b.
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The corresponding Lagrangian function is given by

L(v,v) = tcT2 — Z log(z;) + (tc — X te)TA + %ATX_QA +vTAA
i=1

The KKT conditions are

tc— X te+ X 2A+ ATy 0 (stationarity)
AA = 0 (primal feasibility)

and the linear equations corresponding to the conditions are written by

| —te+ X7t
- 0 ]

Since A is full rank, the linear system has the unique solution (primal and dual solution).

X2 AT
A 0

A
v
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The solution is given by

2] -

B [ X2 - X2ATO1AX2 x24T

X2 AT
A 0

—tc+ X1
0

O tAX? -0t

—tc+ X1
0

where © = —AX?AT. (See the inversion of block matrix for the second equation)
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https://en.wikipedia.org/wiki/Block_matrix

How to find an initial x satisfying Az = b.

e v =(ATA)~ATb where G~ is the generalized inverse matrix of G.

e Solve min, || Az — b||? by the gradient method.
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Example 3 (Isotonic regression)

n

ming,,... 3, Z(yz — Bo— Bizia — -+ — BpTip)®
=il
subject to  B1 < B <--- < B

(hint) Let 5j = ﬂj = ﬁj,1 fOI’j > 2 then (Sj > 0.
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