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Interior Point Methods

Consider a convex optimization problem

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m (1)

Ax = b,

where f0, . . . , fm : Rn → R are convex and twice continuously differentiable, A ∈ Rp×n with

rank(A) = p < n.

For simplicity, assume that f0 is quadratic and fi for i = 1, · · · ,m are linear.
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If Slater’s constraint qualification holds, x∗ and (λ∗, ν∗) ∈ Rm×Rp are primal and dual solution

that the follow KKT conditions

Ax∗ = b, fi(x
∗) ≤ 0, i = 1, . . . ,m

λ∗ ≥ 0

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +A>ν∗ = 0 (2)

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

Without inequality constraints, the above KKT conditions derive a linear system that can be

easily solved. However, the inequality constraints lead to a different story about the optimization

problem.
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Logarithmic barrier function

Consider an equivalent optimization problem to the original one:

minimize f0(x) +

m∑
i=1

I−(fi(x)) (3)

subject to Ax = b,

where

I−(u) =

{
0 u ≤ 0

∞ u > 0.
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Note that I− is not differentiable, which makes the problem computationally prohibitive. Instead,

we use a differentiable function (see Figure 1 on the next page),

Î−(u) = −(1/t) log(−u) for t > 0.

The original optimization problem is relaxed by

minimize f0(x) +

m∑
i=1

−(1/t) log(−fi(x)) (4)

subject to Ax = b.

For a large t > 0 the relaxed objective function is well approximated to (3). Moreover, the

second-order approximated algorithm, such as Newton’s method, can be applied to solve (4) for

fixed t. (see Example 15 in the slide of the dual problem)
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Figure 1: The dotted line displays I−(u), and the solid curves display Î(u). As t increases, Î−(u)

becomes tighter above Î(u)
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Recall the Newton’s method applied to (4).

• Set an initial x(k) for k = 0 where Ax(k) = b and fi(x
(k)) < 0.

• Obtain the quadratic function g(x|x(k)) by the second order approximation of the

objective function (4) at x(k).

• Let x = x(k) + ν and solve the following problem:

min
ν

g(x(k) + ν|x(k))

subject Aν = 0.

(The problem can be easily solved.)

• Update and repeat.
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Let φ(x) = −
∑m
i=1 log(−fi(x)) which is called the logarithmic barrier function for problem (1).

Note that

dom(φ) = {x ∈ Rn | fi < 0, i = 1, . . . ,m}.

Then we consider the equivalent optimization problem to (4) as

minimize tf0(x) + φ(x) (5)

subject to Ax = b,

and denote the solution by x∗(t). Next we investigate the properties of x∗(t).
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Central path

Let x∗(t) be a solution of (5). The central path is a collection of x∗(t) for t > 0. By KKT

conditions (convex objective function with equality constraints),

• (Stationary Condition) There exists a ν̂ ∈ Rp such that

0 = t∇f0(x∗(t)) +

m∑
i=1

1

−fi(x∗(t))
∇fi(x∗(t)) +A>ν̂ (6)

• (Feasibility condition) x∗(t) is strictly feasible

Ax∗(t) = b, fi(x
∗(t)) < 0, i = 1, . . . ,m;

University of Seoul Interior Point Method I 10 / 25



Let

λ∗i = − 1

tfi(x∗(t))
, i = 1, . . . ,m, ν∗ = ν̂/t,

then we will claim that the pair λ∗, ν∗ dual feasible. (Note that λ∗ and ν∗ depend on t.)

• λ∗ > 0 because fi(x
∗(t)) < 0, i = 1, . . . ,m.

• ∇f0(x∗(t)) +
∑m
i=1 λ

∗∇fi(x∗(t)) +A>ν∗ = 0 implies that x∗ minimizes the Lagrangian,

L(x, λ∗, ν∗) = f0(x) +

m∑
i=1

λ∗i fi(x) + (ν∗)>(Ax− b).
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Hence, we know that the dual function associated with (1) is

g(λ∗, ν∗) = inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x)) + (ν∗)>(Ax− b)
)

= f0(x∗(t)) +

m∑
i=1

λ∗i fi(x
∗(t)) + (ν∗)>(Ax∗(t)− b)

= f0(x∗(t))−m/t.

The first equality holds by the definition of dual function, and the second equality holds by the

optimality of L(x, λ∗, ν∗), and the last equality holds because

λ∗i fi(x
∗(t)) = − 1

tfi(x∗(t))
fi(x

∗(t)) = −1/t,

(Ax∗(t)− b) = 0.
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Theorem 1 (suboptimality)

Let p∗ be the optimal value of (1), then

f0(x∗(t))− p∗ ≤ m/t.

(proof) Let p∗ be the optimal value of (1), then g(λ∗, ν∗) ≤ p∗ by weak duality. Thus,

f0(x∗(t))−m/t = g(λ∗, µ∗) ≤ p∗.

Finally, we obtain f0(x∗(t))− p∗ ≤ m/t. (x∗(t) is no more than m/t-suboptimal)
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The centrality condition (perturbed KKT conditions)

The KKT conditions for a relaxed problem can be understood as a modified KKT condition:

• x = x∗(t) is a point on the central path if and only if there exists λ = λ∗(t) and ν = ν∗(t)

such that

Ax = b, fi(x) ≤ 0, i = 1, . . . ,m

λ > 0

∇f0(x) +

m∑
i=1

λi∇fix) +AT ν = 0 (7)

λifi(x) = −1/t, i = 1, . . . ,m

• The complementary slackness condition −λifi(x) = 0 is replaced by λifi(x) = −1/t.
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interpretation of the central path

• The inequality conditions are relaxed by a barrier function.

• The associated KKT conditions are relaxed. The complementary slackness condition is

relaxed as

λifi(x) = −1/t

• The modified problem can be solved by the Newton-Raphson algorithm with equality

constraints.

• The solution to the problem is suboptimal.
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The Barrier method

If we set an upper bound of error as ε > 0, we only let t = m/ε and solve the modified problem.

However, we encounter the problem between numerical stability and accuracy since the algorithm

becomes unstable for a large t.

(HW) Discuss the above problem related to the convergence of Newton’s algorithm.
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Barrier method algorithm

• Given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ε > 0

• Repeat:

• Centering step : Compute x∗(t) by minimizing tf0 + φ, subject to Ax = b, starting at x

• Update x := x∗(t)

• Stopping criterion : quit if m/t < ε

• Increase t: t := µt
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• Execution of step 1 as a centering step or an outer iteration

• Newton iterations or steps executed during the centering step as inner iterations

• At each inner step, we have a primal feasible point

• At each outer step, we have a dual feasible point
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Example 2 (Linear programming)

minimize
x

cTx

subject to Ax = b (8)

x � 0

where A is p× n(p < n) full rank matrix, c ∈ Rp, b ∈ Rn.
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The objective function with barrier function is given by

minimize
x

B(x, t) = tcTx−
n∑
i=1

log(xi)

subject to Ax = b (9)

where real t > 0
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The gradient and hessian of (9) is given by

Gradient : ∇xB(x, t) = tc−X−1e

Hessian : ∇2
xB(x, t) = X−2

where X = diag(x1, . . . , xn), e = (1, . . . , 1)T . The quadratic function is obtained by second-

order approximation near x of the logarithmic barrier function:

min
∆∈Rp

tcTx−
n∑
i=1

log(xi) + (tc−X−1e)T∆ +
1

2
∆TX−2∆

subject to A(x+ ∆) = b

Note that Ax = b.
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The corresponding Lagrangian function is given by

L(v, ν) = tcTx−
n∑
i=1

log(xi) + (tc−X−1e)T∆ +
1

2
∆TX−2∆ + νTA∆

The KKT conditions are

tc−X−1e+X−2∆ +AT ν = 0 (stationarity)

A∆ = 0 (primal feasibility)

and the linear equations corresponding to the conditions are written by[
X−2 AT

A 0

][
∆

ν

]
=

[
−tc +X−1

0

]
.

Since A is full rank, the linear system has the unique solution (primal and dual solution).
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The solution is given by[
∆

ν

]
=

[
X−2 AT

A 0

]−1 [
−tc +X−1

0

]

=

[
X2 −X2ATΘ−1AX2 X2ATΘ−1

Θ−1AX2 −Θ−1

][
−tc +X−1

0

]

where Θ = −AX2AT . (See the inversion of block matrix for the second equation)
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How to find an initial x satisfying Ax = b.

• x = (A>A)−A>b where G− is the generalized inverse matrix of G.

• Solve minx ‖Ax− b‖2 by the gradient method.
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Example 3 (Isotonic regression)

minβ0,··· ,βp

n∑
i=1

(yi − β0 − β1xi1 − · · · − βpxip)2

subject to β1 ≤ β2 ≤ · · · ≤ βp

(hint) Let δj = βj − βj−1 for j ≥ 2 then δj ≥ 0.
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