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Distribution and random numbers
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Generating random number from Binomial distribution

e Bernoulli distribution

e Definition of Binomial distribution

Using uniform distribution, generate numbers from Bernoulli distribution.
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Generating random number from Binomial distribution

Let U ~ [0, 1] then Pr(U < p) =p. That is

I(U < p) =4 Bernoulli(p)

) Set X =0

) Generate U ~ (0,1)

3) fU <pthen X + X +1
) lterate (2)-(3) n times
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Inversion method

Let X ~ F, U ~U[0,1] and X L U, then

(proof) Pr(F~1(U) < z) = Pr(U < F(x))
FY(U)is F.

F(x). Thus, the CDF of a random variable
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Exponential distribution

X ~ exp(A)

o F(z)=1—exp(—Ax)
o F~1(u) = —log(l —u)/\

Gamma (Erlang) distribution

Let X ~ Gamma(n, ) for n € N and 8 > 0.

o IfY; ~ygexp(B~t) fori=1,---,n X =4 D%
o Y; ~ Bexp(l)
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Normal distribution (Box-Miiller method)

The pdf of X ~ N(0,02) is

fx(z)= exp(—x2/2)

1
V2T

° Ul,UQ R U(O, 1)
o 7 =+/—2logU,cos(2rU;) ~ N(0,1)
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(Idea of Box-Miiller method)

e Let Z; and Zs be independent random variables following N (0, 1).

e Since this density is radially symmetric, it is natural to consider the polar coordinate
random variables (R, 0), defined by 0 < 6 < 27 and Z; = Rcos(0) and Z; = Rsin(0).

e Clearly, 8 ~ U[0, 27| =4 27U, where U; ~ U(0,1).
e Intuitively, R L 6.
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(Idea of Box-Miiller method)

R® = R?cos(d)” + R®sin(0)”
= Zi+73
=i X(2)
=4 Gamma(1,2) =4 2exp(1)
=4 —2log(1 — Us) =4 —2log(Us)

where Uy ~ U(0,1). So, R =4 y/—2log(Uz) Therefore,
Z1 = Rcos =4 \/—21og(Us) cos(2nUy).
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Multivariate normal distribution

Let X ~ N,(0,X) and suppose that X is positive definite.

e Find A satisfying A2 =%
o Generate y ~ N, (0,I). Note that y = (y1,--- ,yp) where y; ~;;q N(0,1).
e Obtain x = Ay.
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Rejection sampling

Our object is to obtain random samples from f.

e f is density function of X
e g is density function of Y
e Assume that there exists k£ > 0 such that

kg(x) = f(x)

for all = for which f(x) > 0.
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Rejection sampling algorithm

. Sample Y ~ g
. Sample U ~ U(0,1)
. Reject Y if U > kg(y)/f(y), and return to step 1.

B W NN =

. Otherwise, keep the value of Y. Set X =Y and return to step 1.
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Proposition 1

Let X ~ f andY ~ g and assume that there exists k > 0 such that f(z) < kg(x) for all
x e {x: f(x) >0}
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(proof)

Pr(U < f(Y)/(kg(Y))) = /Pr(U < FY)/(kg(Y)IY = y)g(y)dy

Pr(Y <y, (U < f(Y)/(kg(Y))) = /y dPr(Y =y, (U < f(Y)/(kg(Y)))

Therefore, Pr(Y < y|U < f(Y)/(kg(Y'))) = F(y), which completes the proof.
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Example 1 (Gamma distribution for o < 1)

Let X ~ Gamma(a, 1) then, f(z) = W

e For0 <z <1, f(z) <z !/T(c)
e Forxz > 1, f(z) < exp(—z)/T(«)

From the above relation, we can set

e(z) = 2271 /T () 0<zr<l1
| exp(—z)/T(a) z>1
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Let -
K:/O e(x)dz = (ot + e~1)/T()

then g(z) = K~ le(x) is pdf.
The cdf of g(x) is given by

G(l‘) _ { F&(f)KgI ) 0<xe<l1
eF(a)eK +rora T2 1

We can easily obtain G~ (u).
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inverse CDF

CDF
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Figure 1: G(z) and G~ (x)
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Algorithm

1. Sample Y ~ g (inversion method through G~ 1)

2. Sample U ~ U(0,1)

3. Reject Y if U > f(Y)/e(Y), and return to step 1.

4. Otherwise, keep the value of Y. Set X =Y and return to step 1.

University of Seoul MCMC and Variational inference 18/71



Example 2 (Gamma distribution for oo > 1)

Let X ~ Gamma(a,1). Let h(x) = d(1 + cz)3, and we consider a generating rs defined by
h(X).
The pdf of h(X), fn, is proportional to

exp(g(z)) = h(z)* " exp(=h(z))l' (), (x> —1/c)

where g(z) = (o — 1/3)log(1 + cx)3 — d(1 + cz)® + d
Let d = o — 1/3 and ¢ = 1/v/9d then exp(g(z)) < exp(—22/2).
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(continued) Let fy,(z) = K exp(g(z)) then
fu(z) = K exp(g(2)) < KV2mé(z)

where ¢(x) = \/% exp(—z?%/2)
Note that

Fu(2)/KV2m(z) = exp(g(2))/ (V24 (2)).

We need not to know the value of K in rejection sampling.
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Algorithm

1. Sample Z ~ ¢

2. Sample U ~ U(0,1)

3. Reject Z if U > exp(g(Z))/ exp(—Z2/2), and return to step 1.
4. Otherwise, keep the value of Y. Set Y = Z and return to step 1.

Note that Y = H(X). By inversion of Y, we complete the sampling algorithm.
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we may obtain random sample of y = h(X). By letting z = h~!(y), we obtain rs of X.
exp(h(z)) < exp(—27/2)

We let e(z) = exp(—22/2) then
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Example 3 (Hit or Miss method)

Our object is to compute

= /abg(:c)dx

for g(x) > 0.
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Assume that g(z) € [0, ] for all x € (a,b).

e Set Ny =0
e Fori=1,--- N
e Generate u; and v;
e z;=a+ui(b—a)
e If g(x;) > cv; then Ny — Ng + 1.

o Iy =c(b—a)Ng/N
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e Let p be the probability that a random point falls in S where
S={(z,y) 1y <g(x),y >0}

e p=Ny/N

e Ny ~ bin(N,p)

We know that

° fH is unbiased estimator for I, since
Elg =c(b—a)E(p) =1

o Var(Iy) = (b — a)?Var(p) = I(c(b—a) — I)/N
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We can compute the confidence interval of 1.

p(1 =)

inc(b—a)za/Q N
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Monte-Carlo Simulation

Sample Mean method

Our object is to compute

. / ' o)

for g(z) > 0.
Note that ) . @
= x)dxr = RE eipVdr
I= [ sy~ [ 8 r@y
That is
L 9(X)
I= Ex[m]
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Algorithm

e Fori=1,--- N
e z; ~U(a,b)
e Compute g(z;)

(2
~ N 1
o Isy = Zi:l g(xl)m/N

Note that 1/(b — a) is pdf of X.
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o X ~Uf(a,b) and I = (b—a)E(g9(X))

e [y is unbiased.

Ellsu) = (-a)3 Y EglX:)
1 &L b 1
= (ba)N;/a g(m)(b a)dx:[
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o Var(isy) = £{(b—a) [, g(x)?dw — I?}
Note that Var(fSM) < Var(fH)
Discussion

e Both of Iy, and I is unbiased estimator.
e Var(Isy) < Var(Iy)

Then, we conclude that.

University of Seoul MCMC and Variational inference 30/71



Definition 4 (Markov Chain)

Let X, be a discrete random variable having finite states. {X,,} is Markov chain if

P<Xn‘anla" : 7X1) = P(ananl)
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Theorem 5

Let x; fori =1,--- ,m be a state of X,, and let P be a transition matrix where
(P)ij =Pr(Xpq1 = xj|Xn = ;)

If P € R™*™ s jrreducible then there exists the unique m € S™~! (m-dimensional simplex)
such that

T=7P

(Note:  is a row vector! It is a conventional notation)
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Theorem 6

If P € R™*™ s jrreducible and aperiodic then there exists the unique T € S™~!
(m-dimensional simplex) such that

lim 7o(P") ==

n—roo

for any my € S™1.
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Definition 7 (Detailed Balance Condition)

Let P;; be the transition prob from the state 7 to j and 7 be the state probability. If
m P;; = m;Pj; for all i and j we call that the transition probability matrix P satisfies the

detailed balance condition wrt 7.
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Detailed Balance condition and stationary distribution

If P satisfies the detailed balance condition wrt 7, then 7 is the stationary distribution of P

under regular conditions.

(why?) >, miPij = >, mjPj; = m; ), Pjy = m;. That is, 7 is the solution of 7P = 7.

If we find P satisfying the detailed balance condition, we can generate a random sample following

7 by restoring samples from m(P™) for a large n.
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Markov Chain Monte Carlo
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Monte Carlo method

e Evaluating

= /h(x)w(x)da:
is difficult.

e However, if we can draw independent samples

XU x@ XM on(x),
then we can approximate
1 n

e This is Monte Carlo integration.
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e For independent samples, by Law of Large numbers,
hn = Ex[h(X)] (1)

as n — oo.
e But, generating independent samples from 7(x) may be difficult.

e It turns out that (1) still applies if we generate samples using a Markov chain. That is, the
sequence XM, X @)X (") constitutes a certain Markov chain.

e This is the main idea of MCMC.
e Consider X as 0.
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Gibbs sampler

o Let (X,Y) ~7(x,y).

e Generating (X,Y) jointly from 7(z,y) is difficult.

e However, generating X|Y =y ~ m(z|y) and Y|X =z ~ 7w(y|z) is easy.
(Note that the conditional probability m(x|y) is the transition probability that the state y
moves to the state x in the next step)

e Under this situation, the Gibbs sampler is an algorithm to construct a Markov chain whose
stationary distribution is 7.
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Gibbs sampler algorithm

1. Initialization: Set X(© = 2(0) and V() = y(0),
2. Fori=1ton,

e Generate XV ~ m(z|y=b).
o Generate YV ~ m(y|z®).
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o (XMW Yy (X@ y@) .

is a Markov chain with stationary distribution 7 (z,y).

e The sample path of the Gibbs sampler will look something like

b

(¢t} _yl4))

(x¢

(=P w30

13 y(12)

(%02} y(2)

L=y
( x(@), (01}
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Example

o Let ¥; ~""4 N(p,0%) and m(p,0?%) ox 2.
e We had

n/2+1

2. (4 —u)2}

exp{— 52

1
(1, 0%y) o (=)
g
e Let 7= 1/02. Then, it is easy to derive

o 7(ulo®,y) = N(g,0°/n)
o (7|, y) = Gamma(n/2, 3 (yi — 1)?/2)
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Let x = (21, - ,2zq) and y = (y1,- - ,ya) and let x ~; y if z; = y; for all i = j.

Gibbs sampling and detailed balance condition
Markov chain constructed by Gibbs sampling satisfies the detail balance condition wrt 7.

(why?) P, = 572 m(y) So,

IO

University of Seoul MCMC and Variational inference 43/71



Gibbs sampler algorithm for general cases

. Initialization: Set X( ) = (O) ..,XZ(,O) = x;o)_
2. Fori=1ton,

e Generate X'V ~ (x ‘1(1 D2l

o Generate Xé” Nw(m‘x (1 ey

e Generate Xs(,l> (: ‘-761 ,mg”), Ellfl)m’xl()zfl)).
® i,

e Generate XZ(,i> ~ W(xp\mgi), e m(ill).
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Example 8 (Censored data)

o Let X; ~;;q Exp(N).

e Observations are T; = min{X;, C;} and 6; = I(X; < C;) where C;'s are censoring times.
e Prior : A ~ Gamma(co, B).
e Objective : Obtain the posterior distribution of A given (71,61), ..., (T, dn)-
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(continue with the example)

e Note that if we observe X1, ..., X,,, we have

T(ANX1, ..., Xp) = Gamma(a +n, B + in)'

=1

e The main idea of the Gibbs sampler is to consider the joint posterior distribution of A\ and
(X4,...,X,,) given the observations.

e That is, the Gibbs sampler generate A and (X4, ..., X,,) successively from
m(A X1, ..., X, Data) and 7(X7, ..., X,,|\, Data).
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(continue with the example)

Gibbs sampler algorithm

1. Initialization : A(®) and Xfo), ...,XT(LO).
2. Fori=1ton,
e A ~ Gamma(a+n, B+ 37, X,gi*l)).
o XX ~ IR, w(@e AP, (Th, 6k)) where

o If 6 =1, m(xp = T A\D, (T, k) = 1,
o If 6, =0, (x| AD, (Tk, 0k)) = Exp(AD)|zy > Ty
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Metropolis-Hastings algorithm

e Let 7(x) be a distribution of R* known except possibly for the normalizing constant.

e The aim is to generate X ~ 7.
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Metropolis-Hastings algorithm

1. Choose a transition function ¢(y|x) of a certain Markov chain.
2. Initialize z(©).
3. Fori=1 ton,

e Generate & ~ g(z|z"™Y).
e With probability

al(z% Y %) = min 71'(@‘1(35(1_1)‘32’)
@08 =min |y )

set 20 = & (acceptance) else set (V) = 2(=1)  (rejection).
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MCMC
Markov chain constructed by MH algorithm has the stationary distribution 7

(proof) It suffices to prove that the chain satisfies detailed balance condition wrt 7.
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e The normalizing constant in () is not required in the MH algorithm since we only need
the ratio m(z)/m(z(—1).

e If ¢(y|z) = 7(y), then we obtain independent samples.

e Usually, g is chosen so that ¢(y|x) is easy to sample from.

e Theoretically, any density ¢(+|z) having the same support as 7(-) should work. However,

the choice of ¢ strongly depends on the problem in hand.
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Choice of ¢
e The basic idea of the MH algorithm is

e from the current position x, move to y according to g(y|x), and
e we decide to stay at y, roughly speaking, with probability 7(y)/m(z).

e Hence, ¢(y|x) having more mass when 7(y) is larger and vice versa is a good candidate.
e Definitely, the best choice of ¢ is 7, which is impossible.
e The following three methods are popular:

e Random walk
e |ndependence sampler

e Utilizing 7

52/71

University of Seoul MCMC and Variational inference



Choice of ¢ : Random walk

q(yle) = f(ly - =]).
e Then, y =z + z where z ~ f(|z]) (random walk).

Possible choices of f include the multivariate normal density and the multivariate ¢ density.

With this g,

aa,y) =min {1, 7
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Choice of ¢ : Independence sampler

* q(ylz) = f(y).

e Usual choices of f include the multivariate normal density and the multivariate ¢ density.

Tails of f(y) must be heavier than tails of m(x) for good performance.

Hence, typically, the variance of f is set to be much larger than the (guestimated)
variance of .

Be aware: The more similar f is to 7, the better the MH algorithm performs.
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Choice of ¢ : Utilizing 7

e Exploit the known form of 7 to specify q.
o If m(z) < ¥(x)h(x) where h(x) is an easy-to-generate density and ¢ (x) is uniformly
bounded. Then, let q(y|z) = h(y).
e Example: Normal-Cauchy model
o Let Vi,..., Y ~iia N(6,1).

* m(6) = rrrigy-
e Posterior :
i (yi —6)° 1
w(0ly) o exp(—z 1(2 ))x1+92
n(0 —7)? 1
o exp(f 5 X T

e A possibly good choice for ¢(y|x) is N(y,7/n) for some 7 > 1.
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MH algorithm as an optimization algorithm

e Suppose we want to find the maximum of a given function 7 (z).

e Usual numerical methods such as Newton-Raphson or Gradient descent algorithms fails
when 7(z) is not concave.

e The MH algorithm (with random walk ¢) can be considered as a randomized optimization
algorithm:

e From x, generate y.
e If m(y) > m(z), move to y.
e Even if 7(y) < m(x), move to y with positive probability to avoid being trapped at a local

maxima.

e Similar optimization algorithms are simulated annealing, genetic algorithm, ...
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Convergence diagnostic

e Must do :

e Plot the times series for each quantity of interest.
e Plot the auto-correlation functions.
e Determine the burn-in period and the step size.

e But, realize that you cannot prove that you have converged using any of those.
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Variational inference
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Approximate Bayesian Inference

e Latent variable 8 = (04, ...,6.,,),
e Observations : x = (x1, ..., x,).
Prior : p(8).

Likelihood : p(x|0).

Posterior :
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Example : Normal mixture model

™ = (771, ...,7TK) ~ D(B,,B)7
pr ~ N(0,7%), fork=1,.. K,
zi ~ Multinomial(r), fori=1,...n,

z; ~ N(us,,0?), fori=1,..,n.

e 0= (m, p,z).
e Posterior :
p(61x) = p(m) [y ) Ty pzilm)p il =i, )

S p() J3 iy p() Ty ., p(ailm)p(ail2i, ) dpdr
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Variational inference

e Variational method is to choose v where the variational distribution ¢(8|v) is
well-approximated to the posterior distribution p(0|x).

e 1 : variational parameter

e ¢(0|v) : variational distribution
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Kullback-Leibler Divergence

e Similarity measure : Kullback-Leibler(KL) divergence

q(GIV)}
p(0]x)

e It is not a "distance” since K L(q||p) # K L(p||q).
e KL(p|lp) = 0.

KL(gllp) = E, [log
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Evidence Lower Bound(ELBO)

e Minimizing K L(q||p) is equivalent to maximizing ELBO, which will be defined below.
e By Jensen inequality, f(E[X]) > E[f(X)] when f is concave.
e Definition of ELBO :

logp(x) = log/p(xﬁ)de

~—

p(x,0
log/ 2(61) q(8|v)de

o (535
Eqllogp(x,0)] — Eqllogq(8]v)] := L

Y

e We have to choose the variational distribution where ELBO can be calculated.
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KL divergence and ELBO

K L(q|lp) Eqy[log q(6|v)]
E,[log q(0]v)]

= —L+logp(x)

— E,[log p(8]x)]
— E,4[log p(0, x)] + log p(x)
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Mean-field variational inference

e For the variational distribution, assume that all latent variables are independent:

m

q(0lv) = [T a(6;lv;)-

i=1

In fact, the latent variables are dependent in view of the posterior distribution.

p(x,0) can be decomposed as follows by the property of conditional distribution:

p(x,0) = p(x)p(0 & |x)p(0k|0 1, %)

We update the variational parameter by the coordinate ascent algorithm.

For updating v, we write ELBO as follows:

L =logp(x) + Eq[log p(8_k[x)] + Eqllog p(6x6 _, x)] — Y _ Eqllog q(6;v;)]
=1
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Mean-field variational inference

e [, is defined as the function of v:
Eq[log p(0x[0 1, x)] — Eq[log q(0 [vi)]

/ 4(Ok o) B—i[108 p(01 |0k, X)]d6, — / 4(Ok v 108 (8 k) db..

I —

where E_j; is the expectation with respect to [],; ¢(0;|v;).

o Under [ q(6k|vy)dO, =1, ¢*(0x|vi) which maximizes Ly, is as follows:

q" (Or|vk) o< exp{E_[log p(0x|0_k,x)]}

66 /71
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Mean-field variational inference

e Assume that p(6;|6_,,x) belongs to an exponential family.

p(0;10_;,x) = h(6;) exp{n(O,j,x)Tt(Hj) —a(n(0—;,%))}

e This assumption is satisfied in many complicated models:

Bayesian mixtures of exponential families with conjugate priors
Switching Kalman filters

Hierarchical HMMs

Mixed-membership models of exponential families

Factorial mixtures/HMMs of exponential families

Bayesian linear regression

e We choose the variational distribution with the same exponential family.

a(0lv;) = h(0;)exp{v] t(8;) — a(v;)}

q(8[v) H q(05lv;)
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Mean-field variational inference

e We can calculate E_j[logp(6x|60_,x)] as follows:

log p(0x |0k, x)
E_[log p(0|0_,x)]

log h(6k) + n(0—k, x)Tt(0k) — a(n(6_k,x%))
log h(0k) + E_[n(0_k,x)] " t(0k)
—E_la(n(0_x,x))]

e We can rewrite ¢*(0x|v) as follows:

¢ (Oklvi) o h(0k) exp{E_g[n(0_k,x)]" t(6x)}
q" (Ok|vk) q(Ok|vi),

where

v, = E_g[n(0_x,x)]
e We update all v///'s by the above equation until they converge.
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Example : Normal mixture model(revisited)

ﬂ-:(ﬂ'lv"'vTrK) ~ D(6775)7
pr ~ N(,7%), fork=1,.. K,
zi ~ Multinomial(r), fori=1,..,n,

z; ~ N(ps,,0?), fori=1,...n.

e We choose the variational distribution as follows:

w & D(bl,...7bK),
ur ~ N(mp,s3), fork=1,.., K,

z; ~ Multinomial(pi1,...,pir), fori=1, .. n.
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Example : Normal mixture model(revisited)

e The variational method iteratively update the below equations until the variational
parameters converge.

2 2
TiMi mi + S
i o oxp{Un) — 0o+ oo b + Tk - TS

n n =il
o Zizl PikZi 52 1 Zi:1 Pik
mg = 2 y Sk = | 5 o S— s
o n 2 2
Tz + Zizl Pik T o

k
bk B+ pik-
i=1
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(It is allowed to use a generating code for only uniform and normal distributions)

e Generalized Extreme distribution
e Gamma distribution a« = 3, § = 3/2
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