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Distribution and random numbers
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Generating random number from Binomial distribution

• Bernoulli distribution

• Definition of Binomial distribution

Using uniform distribution, generate numbers from Bernoulli distribution.
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Generating random number from Binomial distribution

Let U ∼ [0, 1] then Pr(U ≤ p) = p. That is

I(U ≤ p) =d Bernoulli(p)

(1) Set X = 0

(2) Generate U ∼ (0, 1)

(3) If U < p then X ← X + 1

(4) Iterate (2)-(3) n times
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Inversion method

Let X ∼ F , U ∼ U [0, 1] and X ⊥ U , then

F−1(U) =d X

(proof) Pr(F−1(U) ≤ x) = Pr(U ≤ F (x)) = F (x). Thus, the CDF of a random variable

F−1(U) is F .
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Exponential distribution

X ∼ exp(λ)

• F (x) = 1− exp(−λx)

• F−1(u) = − log(1− u)/λ

Gamma (Erlang) distribution

Let X ∼ Gamma(n, β) for n ∈ N and β > 0.

• If Yi ∼iid exp(β−1) for i = 1, · · · , n X =d

∑n
i=1 Yi

• Yi ∼ β exp(1)
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Normal distribution (Box-Müller method)

The pdf of X ∼ N(0, σ2) is

fX(x) =
1√
2π

exp(−x2/2)

• U1, U2 ∼ U(0, 1)

• Z =
√
−2 logU2 cos(2πU1) ∼ N(0, 1)
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(Idea of Box-Müller method)

• Let Z1 and Z2 be independent random variables following N(0, 1).

• Since this density is radially symmetric, it is natural to consider the polar coordinate

random variables (R, θ), defined by 0 ≤ θ < 2π and Z1 = R cos(θ) and Z2 = R sin(θ).

• Clearly, θ ∼ U [0, 2π] =d 2πU1 where U1 ∼ U(0, 1).

• Intuitively, R ⊥ θ.
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(Idea of Box-Müller method)

R2 = R2 cos(θ)2 +R2 sin(θ)2

= Z2
1 + Z2

2

=d χ2(2)

=d Gamma(1, 2) =d 2 exp(1)

=d −2 log(1− U2) =d −2 log(U2)

where U2 ∼ U(0, 1). So, R =d

√
−2 log(U2) Therefore,

Z1 = R cos θ =d

√
−2 log(U2) cos(2πU1).

University of Seoul MCMC and Variational inference 9 / 71



Multivariate normal distribution

Let X ∼ Np(0,Σ) and suppose that Σ is positive definite.

• Find A satisfying A2 = Σ

• Generate y ∼ Np(0, I). Note that y = (y1, · · · , yp) where yi ∼iid N(0, 1).

• Obtain x = Ay.
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Rejection sampling

Our object is to obtain random samples from f .

• f is density function of X

• g is density function of Y

• Assume that there exists k > 0 such that

kg(x) ≥ f(x)

for all x for which f(x) > 0.

University of Seoul MCMC and Variational inference 11 / 71



Rejection sampling algorithm

1. Sample Y ∼ g
2. Sample U ∼ U(0, 1)

3. Reject Y if U > kg(y)/f(y), and return to step 1.

4. Otherwise, keep the value of Y . Set X = Y and return to step 1.
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Proposition 1

Let X ∼ f and Y ∼ g and assume that there exists k > 0 such that f(x) ≤ kg(x) for all

x ∈ {x : f(x) > 0}.
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(proof)

Pr(U ≤ f(Y )/(kg(Y ))) =

∫
Pr(U ≤ f(Y )/(kg(Y ))|Y = y)g(y)dy

=

∫
f(y)

kg(y)
g(y)dy = 1/k.

Pr(Y ≤ y, (U ≤ f(Y )/(kg(Y ))) =

∫ y

−∞
dPr(Y = y, (U ≤ f(Y )/(kg(Y )))

=

∫ y

−∞
g(y)

f(y)

kg(y)
dy = F (y)/k

Therefore, Pr(Y ≤ y|U ≤ f(Y )/(kg(Y ))) = F (y), which completes the proof.
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Example 1 (Gamma distribution for α < 1)

Let X ∼ Gamma(α, 1) then, f(x) = xα−1 exp(−x)
Γ(α)

• For 0 < x ≤ 1, f(x) ≤ xα−1/Γ(α)

• For x ≥ 1, f(x) ≤ exp(−x)/Γ(α)

From the above relation, we can set

e(x) =

{
xα−1/Γ(α) 0 < x < 1

exp(−x)/Γ(α) x ≥ 1
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Let

K =

∫ ∞
0

e(x)dx = (α−1 + e−1)/Γ(α)

then g(x) = K−1e(x) is pdf.

The cdf of g(x) is given by

G(x) =

{
xα

Γ(α)Kα 0 < x < 1
e−1−e−x

Γ(α)K + 1
Γ(α)Kα x ≥ 1.

We can easily obtain G−1(u).
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Figure 1: G(x) and G−1(x)
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Algorithm

1. Sample Y ∼ g (inversion method through G−1)

2. Sample U ∼ U(0, 1)

3. Reject Y if U > f(Y )/e(Y ), and return to step 1.

4. Otherwise, keep the value of Y . Set X = Y and return to step 1.
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Example 2 (Gamma distribution for α > 1)

Let X ∼ Gamma(α, 1). Let h(x) = d(1 + cx)3, and we consider a generating rs defined by

h(X).

The pdf of h(X), fh, is proportional to

exp(g(x)) = h(x)α−1 exp(−h(x))h′(x), (x > −1/c)

where g(x) = (α− 1/3) log(1 + cx)3 − d(1 + cx)3 + d

Let d = α− 1/3 and c = 1/
√

9d then exp(g(x)) ≤ exp(−x2/2).
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(continued) Let fh(x) = K exp(g(x)) then

fh(x) = K exp(g(x)) ≤ K
√

2πφ(x)

where φ(x) = 1√
2π

exp(−x2/2)

Note that

fh(x)/K
√

2πφ(x) = exp(g(x))/(
√

2πφ(x)).

We need not to know the value of K in rejection sampling.
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Algorithm

1. Sample Z ∼ φ
2. Sample U ∼ U(0, 1)

3. Reject Z if U > exp(g(Z))/ exp(−Z2/2), and return to step 1.

4. Otherwise, keep the value of Y . Set Y = Z and return to step 1.

Note that Y = H(X). By inversion of Y , we complete the sampling algorithm.
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we may obtain random sample of y = h(X). By letting x = h−1(y), we obtain rs of X.

exp(h(x)) ≤ exp(−x2/2)

We let e(x) = exp(−x2/2) then
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Example 3 (Hit or Miss method)

Our object is to compute

I =

∫ b

a

g(x)dx

for g(x) ≥ 0.
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Assume that g(x) ∈ [0, c] for all x ∈ (a, b).

• Set NH = 0

• For i = 1, · · · , N
• Generate ui and vi

• xi = a+ ui(b− a)

• If g(xi) ≥ cvi then NH → NH + 1.

• ÎH = c(b− a)NH/N
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• Let p be the probability that a random point falls in S where

S = {(x, y) : y ≤ g(x), y ≥ 0}
• p̂ = NH/N

• NH ∼ bin(N, p)

We know that

• ÎH is unbiased estimator for I, since

EÎH = c(b− a)E(p̂) = I

• Var(IH) = c2(b− a)2Var(p̂) = I(c(b− a)− I)/N
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We can compute the confidence interval of ÎH .

ÎH ± c(b− a)zα/2

√
p̂(1− p̂)
N
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Monte-Carlo Simulation

Sample Mean method

Our object is to compute

I =

∫ b

a

g(x)dx

for g(x) ≥ 0.

Note that

I =

∫ b

a

g(x)dx =

∫ b

a

g(x)

f(x)
f(x)dx

That is

I = EX [
g(X)

f(X)
]
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Algorithm

• For i = 1, · · · , N
• xi ∼ U(a, b)

• Compute g(xi)

• ÎSM =
∑N
i=1 g(xi)

1
(b−a)/N

Note that 1/(b− a) is pdf of X.
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• X ∼ U(a, b) and I = (b− a)E(g(X))

• ÎSM is unbiased.

E(ÎSM ) = (b− a)
1

N

N∑
i=1

Eg(Xi))

= (b− a)
1

N

N∑
i=1

∫ b

a

g(x)
1

(b− a)
dx = I
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• Var(ÎSM ) = 1
N {(b− a)

∫ b
a
g(x)2dx− I2}

Note that Var(ÎSM ) ≤ Var(ÎH)

Discussion

• Both of ÎSM and ÎH is unbiased estimator.

• Var(ÎSM ) ≤ Var(ÎH)

Then, we conclude that.
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Definition 4 (Markov Chain)

Let Xn be a discrete random variable having finite states. {Xn} is Markov chain if

P (Xn|Xn−1, · · · , X1) = P (Xn|Xn−1).
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Theorem 5

Let xi for i = 1, · · · ,m be a state of Xn and let P be a transition matrix where

(P )ij = Pr(Xn+1 = xj |Xn = xi)

If P ∈ Rm×m is irreducible then there exists the unique π ∈ Sm−1 (m-dimensional simplex)

such that

π = πP

(Note: π is a row vector! It is a conventional notation)
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Theorem 6

If P ∈ Rm×m is irreducible and aperiodic then there exists the unique π ∈ Sm−1

(m-dimensional simplex) such that

lim
n→∞

π0(Pn) = π

for any π0 ∈ Sm−1.
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Definition 7 (Detailed Balance Condition)

Let Pij be the transition prob from the state i to j and π be the state probability. If

πiPij = πjPji for all i and j we call that the transition probability matrix P satisfies the

detailed balance condition wrt π.
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Detailed Balance condition and stationary distribution

If P satisfies the detailed balance condition wrt π, then π is the stationary distribution of P

under regular conditions.

(why?)
∑
i πiPij =

∑
i πjPji = πj

∑
i Pji = πj . That is, π is the solution of πP = π.

If we find P satisfying the detailed balance condition, we can generate a random sample following

π by restoring samples from π0(Pn) for a large n.
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Markov Chain Monte Carlo
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Monte Carlo method

• Evaluating

Eπ[h(X)] =

∫
h(x)π(x)dx

is difficult.

• However, if we can draw independent samples

X(1), X(2), ..., X(n) ∼ π(x),

then we can approximate

Eπ[h(X)] ≈ h̄n =
1

n

n∑
t=1

h(X(t)).

• This is Monte Carlo integration.
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• For independent samples, by Law of Large numbers,

h̄n → Eπ[h(X)] (1)

as n→∞.

• But, generating independent samples from π(x) may be difficult.

• It turns out that (1) still applies if we generate samples using a Markov chain. That is, the

sequence X(1), X(2), ..., X(n) constitutes a certain Markov chain.

• This is the main idea of MCMC.

• Consider X as θ.
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Gibbs sampler

• Let (X,Y ) ∼ π(x, y).

• Generating (X,Y ) jointly from π(x, y) is difficult.

• However, generating X|Y = y ∼ π(x|y) and Y |X = x ∼ π(y|x) is easy.

(Note that the conditional probability π(x|y) is the transition probability that the state y

moves to the state x in the next step)

• Under this situation, the Gibbs sampler is an algorithm to construct a Markov chain whose

stationary distribution is π.
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Gibbs sampler algorithm

1. Initialization: Set X(0) = x(0) and Y (0) = y(0).

2. For i = 1 to n,

• Generate X(i) ∼ π(x|y(i−1)).

• Generate Y (i) ∼ π(y|x(i)).
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• (X(1), Y (1)), (X(2), Y (2)), ... is a Markov chain with stationary distribution π(x, y).

• The sample path of the Gibbs sampler will look something like
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Example

• Let Yi ∼i.i.d N(µ, σ2) and π(µ, σ2) ∝ 1
σ2 .

• We had

π(µ, σ2|y) ∝ (
1

σ2
)n/2+1 exp{−

∑
(yi − µ)2

2σ2
}

• Let τ = 1/σ2. Then, it is easy to derive

• π(µ|σ2, y) = N(ȳ, σ2/n)

• π(τ |µ, y) = Gamma(n/2,
∑

(yi − µ)2/2)
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Let x = (x1, · · · , xd) and y = (y1, · · · , yd) and let x ∼j y if xi = yi for all i = j.

Gibbs sampling and detailed balance condition
Markov chain constructed by Gibbs sampling satisfies the detail balance condition wrt π.

(why?) Pxy = 1
d

π(y)∑
z:z∼jx

π(z) So,

π(x)Pxy =
1

d

π(x)π(y)∑
z:z∼jx π(z)

=
1

d

π(y)π(x)∑
z:z∼jx π(z)

= π(y)Pyx.
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Gibbs sampler algorithm for general cases

1. Initialization: Set X
(0)
1 = x

(0)
1 , ..., X

(0)
p = x

(0)
p .

2. For i = 1 to n,

• Generate X
(i)
1 ∼ π(x1|x(i−1)

2 , ..., x
(i−1)
p ).

• Generate X
(i)
2 ∼ π(x2|x(i)1 , x

(i−1)
3 , ..., x

(i−1)
p ).

• Generate X
(i)
3 ∼ π(x3|x(i)1 , x

(i)
2 , x

(i−1)
4 ..., x

(i−1)
p ).

• ................

• Generate X
(i)
p ∼ π(xp|x(i)1 , ..., x

(i)
p−1).
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Example 8 (Censored data)

• Let Xi ∼i.i.d Exp(λ).

• Observations are Ti = min{Xi, Ci} and δi = I(Xi ≤ Ci) where Ci’s are censoring times.

• Prior : λ ∼ Gamma(α, β).

• Objective : Obtain the posterior distribution of λ given (T1, δ1), ..., (Tn, δn).
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(continue with the example)

• Note that if we observe X1, ..., Xn, we have

π(λ|X1, ..., Xn) = Gamma(α+ n, β +

n∑
i=1

Xi).

• The main idea of the Gibbs sampler is to consider the joint posterior distribution of λ and

(X1, ..., Xn) given the observations.

• That is, the Gibbs sampler generate λ and (X1, ..., Xn) successively from

π(λ|X1, ..., Xn,Data) and π(X1, ..., Xn|λ,Data).
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(continue with the example)

Gibbs sampler algorithm

1. Initialization : λ(0) and X
(0)
1 , ..., X

(0)
n .

2. For i = 1 to n,

• λ(i) ∼ Gamma(α+ n, β +
∑n
k=1X

(i−1)
k ).

• X
(i)
1 , ..., X

(i)
n ∼

∏n
k=1 π(xk|λ(i), (Tk, δk)) where

• If δk = 1, π(xk = Tk|λ(i), (Tk, δk)) = 1,

• If δk = 0, π(xk|λ(i), (Tk, δk)) = Exp(λ(i))|xk ≥ Tk.
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Metropolis-Hastings algorithm

• Let π(x) be a distribution of Rk known except possibly for the normalizing constant.

• The aim is to generate X ∼ π.
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Metropolis-Hastings algorithm

1. Choose a transition function q(y|x) of a certain Markov chain.

2. Initialize x(0).

3. For i = 1 to n,

• Generate x̃ ∼ q(x|x(i−1)).

• With probability

α(x(i−1), x̃) = min

{
π(x̃)q(x(i−1)|x̃)

π(x(i−1))q(x̃|x(i−1))

}
,

set x(i) = x̃ (acceptance) else set x(i) = x(i−1) (rejection).
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MCMC

Markov chain constructed by MH algorithm has the stationary distribution π

(proof) It suffices to prove that the chain satisfies detailed balance condition wrt π.
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• The normalizing constant in π(x) is not required in the MH algorithm since we only need

the ratio π(x̃)/π(x(i−1)).

• If q(y|x) = π(y), then we obtain independent samples.

• Usually, q is chosen so that q(y|x) is easy to sample from.

• Theoretically, any density q(·|x) having the same support as π(·) should work. However,

the choice of q strongly depends on the problem in hand.
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Choice of q

• The basic idea of the MH algorithm is

• from the current position x, move to y according to q(y|x), and

• we decide to stay at y, roughly speaking, with probability π(y)/π(x).

• Hence, q(y|x) having more mass when π(y) is larger and vice versa is a good candidate.

• Definitely, the best choice of q is π, which is impossible.

• The following three methods are popular:

• Random walk

• Independence sampler

• Utilizing π
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Choice of q : Random walk

• q(y|x) = f(|y − x|).

• Then, y = x+ z where z ∼ f(|z|) (random walk).

• Possible choices of f include the multivariate normal density and the multivariate t density.

• With this q,

α(x, y) = min

{
1,
π(y)

π(x)

}
.
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Choice of q : Independence sampler

• q(y|x) = f(y).

• Usual choices of f include the multivariate normal density and the multivariate t density.

• Tails of f(y) must be heavier than tails of π(x) for good performance.

• Hence, typically, the variance of f is set to be much larger than the (guestimated)

variance of π.

• Be aware: The more similar f is to π, the better the MH algorithm performs.
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Choice of q : Utilizing π

• Exploit the known form of π to specify q.

• If π(x) ∝ ψ(x)h(x) where h(x) is an easy-to-generate density and ψ(x) is uniformly

bounded. Then, let q(y|x) = h(y).

• Example: Normal-Cauchy model

• Let Y1, ..., Yn ∼i.i.d. N(θ, 1).

• π0(θ) = 1
π(1+θ2)

.

• Posterior :

π(θ|y) ∝ exp

(
−
∑n
i=1(yi − θ)2

2

)
× 1

1 + θ2

∝ exp

(
− n(θ − ȳ)2

2

)
× 1

1 + θ2
.

• A possibly good choice for q(y|x) is N(ȳ, τ/n) for some τ > 1.
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MH algorithm as an optimization algorithm

• Suppose we want to find the maximum of a given function π(x).

• Usual numerical methods such as Newton-Raphson or Gradient descent algorithms fails

when π(x) is not concave.

• The MH algorithm (with random walk q) can be considered as a randomized optimization

algorithm:

• From x, generate y.

• If π(y) ≥ π(x), move to y.

• Even if π(y) < π(x), move to y with positive probability to avoid being trapped at a local

maxima.

• Similar optimization algorithms are simulated annealing, genetic algorithm, ...
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Convergence diagnostic

• Must do :

• Plot the times series for each quantity of interest.

• Plot the auto-correlation functions.

• Determine the burn-in period and the step size.

• But, realize that you cannot prove that you have converged using any of those.
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Variational inference
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Approximate Bayesian Inference

• Latent variable θ = (θ1, ..., θm),

• Observations : x = (x1, ..., xn).

• Prior : p(θ).

• Likelihood : p(x|θ).

• Posterior :

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

.
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Example : Normal mixture model

π = (π1, ..., πK) ∼ D(β, ..., β),

µk ∼ N (0, τ2), for k = 1, ...,K,

zi ∼ Multinomial(π), for i = 1, ..., n,

xi ∼ N (µzi , σ
2), for i = 1, ..., n.

• θ = (π,µ, z).

• Posterior :

p(θ|x) =
p(π)

∏K
k=1 p(µk)

∏n
i=1 p(zi|π)p(xi|zi,µ)∫

π
p(π)

∫
µ
∏K
k=1 p(µk)

∏n
i=1

∑
zi
p(zi|π)p(xi|zi,µ)dµdπ
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Variational inference

• Variational method is to choose ν where the variational distribution q(θ|ν) is

well-approximated to the posterior distribution p(θ|x).

• ν : variational parameter

• q(θ|ν) : variational distribution
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Kullback-Leibler Divergence

• Similarity measure : Kullback-Leibler(KL) divergence

KL(q||p) = Eq

[
log

q(θ|ν)

p(θ|x)

]
• It is not a ”distance” since KL(q||p) 6= KL(p||q).

• KL(p||p) = 0.

University of Seoul MCMC and Variational inference 62 / 71



Evidence Lower Bound(ELBO)

• Minimizing KL(q||p) is equivalent to maximizing ELBO, which will be defined below.

• By Jensen inequality, f(E[X]) ≥ E[f(X)] when f is concave.

• Definition of ELBO :

log p(x) = log

∫
p(x,θ)dθ

= log

∫
p(x,θ)

q(θ|ν)
q(θ|ν)dθ

= log

(
Eq

[
p(x,θ)

q(θ|ν)

])
≥ Eq[log p(x,θ)]− Eq[log q(θ|ν)] := L

• We have to choose the variational distribution where ELBO can be calculated.
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KL divergence and ELBO

KL(q||p) = Eq[log q(θ|ν)]− Eq[log p(θ|x)]

= Eq[log q(θ|ν)]− Eq[log p(θ,x)] + log p(x)

= −L+ log p(x)
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Mean-field variational inference

• For the variational distribution, assume that all latent variables are independent:

q(θ|ν) =

m∏
i=1

q(θj |νj).

• In fact, the latent variables are dependent in view of the posterior distribution.

• p(x,θ) can be decomposed as follows by the property of conditional distribution:

p(x,θ) = p(x)p(θ−k|x)p(θk|θ−k,x)

• We update the variational parameter by the coordinate ascent algorithm.

• For updating νk, we write ELBO as follows:

L = log p(x) + Eq [log p(θ−k|x)] + Eq [log p(θk|θ−k,x)]−
m∑
j=1

Eq [log q(θj |νj)]
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Mean-field variational inference

• Lk is defined as the function of νk:

Lk := Eq [log p(θk|θ−k,x)]− Eq [log q(θk|νk)]

=

∫
q(θk|νk)E−k[log p(θk|θ−k,x)]dθk −

∫
q(θk|νk) log q(θk|νk)dθk.

where E−k is the expectation with respect to
∏
j 6=k q(θj |νj).

• Under
∫
q(θk|νk)dθk = 1, q∗(θk|νk) which maximizes Lk is as follows:

q∗(θk|νk) ∝ exp{E−k[log p(θk|θ−k,x)]}
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Mean-field variational inference

• Assume that p(θj |θ−j ,x) belongs to an exponential family.

p(θj |θ−j ,x) = h(θj) exp{η(θ−j ,x)T t(θj)− a(η(θ−j ,x))}

• This assumption is satisfied in many complicated models:

• Bayesian mixtures of exponential families with conjugate priors

• Switching Kalman filters

• Hierarchical HMMs

• Mixed-membership models of exponential families

• Factorial mixtures/HMMs of exponential families

• Bayesian linear regression

• We choose the variational distribution with the same exponential family.

q(θj |νj) = h(θj) exp{νTj t(θj)− a(νj)}

q(θ|ν) =

m∏
j=1

q(θj |νj)
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Mean-field variational inference

• We can calculate E−k[log p(θk|θ−k,x)] as follows:

log p(θk|θ−k,x) = log h(θk) + η(θ−k,x)
T t(θk)− a(η(θ−k,x))

E−k[log p(θk|θ−k,x)] = log h(θk) + E−k[η(θ−k,x)]
T t(θk)

−E−k[a(η(θ−k,x))]

• We can rewrite q∗(θk|νk) as follows:

q∗(θk|νk) ∝ h(θk) exp{E−k[η(θ−k,x)]T t(θk)}
q∗(θk|νk) = q(θk|ν∗k),

where

ν∗k = E−k[η(θ−k,x)]

• We update all ν∗k ’s by the above equation until they converge.
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Example : Normal mixture model(revisited)

π = (π1, ..., πK) ∼ D(β, ..., β),

µk ∼ N (0, τ2), for k = 1, ...,K,

zi ∼ Multinomial(π), for i = 1, ..., n,

xi ∼ N (µzi , σ
2), for i = 1, ..., n.

• We choose the variational distribution as follows:

π ∼ D(b1, ..., bK),

µk ∼ N (mk, s
2
k), for k = 1, ...,K,

zi ∼ Multinomial(pi1, ..., piK), for i = 1, ..., n.
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Example : Normal mixture model(revisited)

• The variational method iteratively update the below equations until the variational

parameters converge.

p∗ik ∝ exp

{
ψ(bk)− ψ(b1 + · · ·+ bK) +

ximk

σ2
− m2

k + s2
k

2σ2

}
,

m∗k =

∑n
i=1 pikxi

σ2

τ2 +
∑n
i=1 pik

, s∗k
2 =

(
1

τ2
+

∑n
i=1 pik
σ2

)−1

,

b∗k = β +

k∑
i=1

pik.
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HW

(It is allowed to use a generating code for only uniform and normal distributions)

• Generalized Extreme distribution

• Gamma distribution α = 3, β = 3/2
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