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Introduction
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Optimization problem

• Objective function: L : Rp 7→ R

• assume that L is differentiable and strictly convex.

• optimization problem is to obtain

w∗ = argmin
w∈Rp

L(w)
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Optimization problem

• solve ∇L(w) = 0 where

∇L(w) = (
∂L(w)

∂w1
, · · · , ∂L(w)

∂wp
)>

with w = (w1, · · · , wp)>.

• When the solution of the equation does not have a closed form, the iterative algorithm is

widely used.
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Newton-Raphson algorithm: second order algorithm

Assume that L(w) is twice differentiable, and denote the Hessian matrix of L(w) by H(w).

• Set k = 0, an initial w(k) ∈ Rp

• Repeat:

• w(k+1) ← w(k) −H(w(k))−1∇L(w(k))

• k ← k + 1

• If w(k) converges, stop the algorithm.

• Return w(k)
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contour plot

Figure 1: contour plot of an L(w)
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set an initial

Figure 2: contour plot of an L(w)
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Quadratic approximation and updating solution

Figure 3: dashed curve is the contour of quadratic function approximated at the initial points
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Quadratic approximation and updating solution

Figure 4: dashed curve is the contour of quadratic function approximated at the updated points
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Newton-Raphson algorithm

• Set an initial;

• Approximate L(w) at the current solution by quadratic function

• Update the current solution by minimizing the quadratic function
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Newton-Raphson algorithm

• Pros:

• efficient in the sense of a required number of iterations

• Cons:

• numerically unstable;

• computational cost is very high when p is large.
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Gradient decent algorithm: first order method

• Set k = 0, an initial w(k) ∈ Rp and η > 0

• Repeat:

• w(k+1) ← w(k) − η∇L(w(k))

• k ← k + 1

• If w(k) converges, stop the algorithm.

• Return w(k)
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Gradient vector

• Tangent space at w(k) : T (w(k)) = {w ∈ Rp : ∇L(w(k))>w = 0}
• Gradient vector at w(k) satisfies that

∇L(w(k))>w = 0

for w ∈ T (w(k)) by definition. (orthogonal to tangent vector)

• The gradient vector is the fastest direction to increase the value of the objective function

at the point w(k).

• Move the opposite direction of the gradient vector at the current solution.

University of Seoul Stochastic Gradient Method 13 / 36



Gradient decent algorithm: first order method

Figure 5: Contour and gradient vector of an L(w): gray curve denotes the contour; the red point

denotes w∗; the red lines denote the gradient vectors
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Gradient decent algorithm: first order method

• Pros:

• computational cost for each iteration is relatively low.

• updating is computationally stable.

• Cons:

• Required number of iterations for convergence is generally large.

Back-propagation algorithm is a gradient decent method for (deep) neural network model.
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Stochastic gradient decent (SGD) method

• Generally L(w) is an empirical risk function. For example, L(w) = 1
n

∑n
j=1 l(w; zj), where

zj denotes the jth observation.

• Often, applying the GD to some problems is difficult when all zjs are not able to be

loaded in the GPU or CPU memory.

• Case 1: assume that n is very large such that computing ∇L(w) is intractable.

• Case 2: assume that L(w) is not fixed since zj is observed on-line.

• Sampling or partitioning data from D = {zj : 1 ≤ j ≤ n} and apply the gradient decent

method.
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SGD algorithm

• Set k = 0, an initial w(k) ∈ Rp and η > 0

• Repeat:

• Sample a set B ⊂ {1, · · · , n}
• Compute ∇L(w(k)) =

∑
j∈B ∇l(w

(k), zj)/|B|
• w(k+1) ← w(k) + η(−∇L(w(k)))

• k ← k + 1

• If w(k) converges, stop the algorithm.

• Return w(k)
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SGD algorithm by (mini) batch

• Set k = 0, an initial w(k) ∈ Rp and η > 0

• Set a partition of {1, · · · , n}: B1, · · · , Bm
• Repeat:

• Sample m′ ∈ {1, · · · ,m}
• Compute ∇L(w(k)) =

∑
j∈Bm′

∇l(w(k), zj)/|Bm′ |
• w(k+1) ← w(k) + η(−∇L(w(k)))

• k ← k + 1

• If w(k) converges, stop the algorithm.

• Return w(k)
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Expectation of stochastic gradient

Figure 6: Left panel displays stochastic gradient vectors in batch samples; right panel displays

expectation of the stochastic gradients
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Since the stochastic gradient is proportional to unbiased estimator of the gradient vector of

L(w), we can expect the desired good property of the solution obtained by stochastic gradient

method. The convergence will be shown in the last section.
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Variants of SGD
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Stochastic gradient descent with Moment

• Parameters: Learning rate η, batch size b, initial value of w, moment parameter α

• Input : Sample z1, · · · , zn
• Algorithm

1. set initial w(1), ∆w(0) = 0

2. for t = 1 to iteration do

St is a index set of b random samples

Lt(w) = 1
b

∑
i∈St

l(w, zi)

∆w(t) = −η∇Li(w
(t)) + α∆w(t−1)

w(t+1) = w(t) + ∆w(t)

end for

3. Return w

(∆w(t) is the updated vector at the tth step.)
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For convenience, we ignore the index of batch in the algorithm. The solution of the GD algorithm

at t,

w(t) = w(1) − η
t−1∑
k=1

∇L(w(k))

While, the solution of the moment method is given by

w(t) = w(1) − η
t−1∑
k=1

∇L(w(k))− η
t−2∑
k=1

t−k−1∑
s=1

αs∇L(w(k)).

Equally,

w(t) = w(1) − η
t−1∑
k=1

t−k∑
s=1

αs−1∇L(w(k))
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Adagrad

• Parameters: Learning rate η, batch size b, initial value of w

• Input : Sample z1, · · · , zn
• Algorithm

set w(1), G(1) = 0 ∈ Rp×p, where p is dimension of parameter

for t = 1 to iteration do

St := b size of random sample from {1, · · · , n}
Lt(w) = 1

b

∑
i∈St

l(w, zi)

∇w(t) = ∇Lt(w(t))

G(t) = G(t−1) +∇w(t)∇w(t)>

w(t+1) = w(t) − ηdiag(G(t))−
1
2 �∇w(t), where � denotes Hadamard product

end for

Return w
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Note that

(G(t))jj =

t∑
k=1

(∇w(k))2j ,

thus

(
diag(G(t))−

1
2 �∇w(t)

)
j

=
∇w(t)

j√∑t
k=1∇(w(k))2j

.

The Adagrad control the learning rate coordinatewisely according to the variation of the gradient

along the past trajectory. Adagrad reduces the learning rate in the direction with high variation.
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RMSprop

• Parameters: Learning rate η, batch size b, initial value of w,γ ∈ [0, 1)

• Input : Sample z1, · · · , zn
• Algorithm

set w(1), v(0) = 0 ∈ Rp

for t = 1 to iteration do

St := b size of random sample from {1, · · · , n}
Lt(w) = 1

b

∑
i∈St

l(w, zt)

∇w(t) = ∂Lt(w
(t))

∂w

v(t) = γv(t−1) + (1− γ)(∇w(t) �∇w(t))

∆w(t) = −η∇w
(t)

√
v(t)

w(t+1) = w(t) + ∆w(t)

end for

Return w
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Note that

v(t) = (1− γ)(

t−1∑
k=1

γk(∆w(t−k+1))2),

which is exponential moving average of (∆w(t−k+1))2s. While the adagrad employs the arithmetic

average.

It is trivial that the adagrad adopts the idea of the moment method to increase the weight of

the variation of recently updated solutions.
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Adam

• Parameters: Learning rate η, batch size b, initial value of w, γ1, γ2 ∈ [0, 1), ε > 0

• Input : Sample z1, · · · , zn
• Algorithm set m(0) = v(0) = 0 ∈ Rp

for t = 1 to iteration do

St := b size of random sample from {1, · · · , n}
Lt(w) = 1

b

∑
i∈St

l(w, zi)

∇w(t) = ∂Lt(w
(t))

∂w

m(t) = γ1m
(t−1) + (1− γ1)∇w(t)

v(t) = γ2v
(t−1) + (1− γ2)(∇w(t) �∇w(t))

m̂(t) = m(t)

1−γt
1
, ˆv(t) = v(t)

1−γt
2

∆w(t) = −η m̂(t)√
ˆv(t)+ε

w(t+1) = w(t) + ∆w(t)

end for

Return w
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Adam compromises the updating strategies of the moment method and RMSprop.
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Relation between Adam and previous algorithms

The first moment estimate m at the i step in Adam :

m(0) = 0

m(1) = γ1 ×m(0) + (1− γ1)×∇w(1) = (1− γ1)×∇w(1)

m(2) = γ1 ×m(1) + (1− γ1)×∇w(2)

= γ1(1− γ1)×∇w(1) + (1− γ1)×∇w(2)

...

m(i) = γi−11 (1− γ1)∇w(1) + · · ·+ (1− γ1)∇w(i)

So, we can get general solution of m(i). Using this, we also can get general solution of m̂(i).
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m̂(t) =
m(t)

1− γt1
=

γt−11 (1− γ1)∇w(1) + · · ·+ (1− γ1)∇w(t)

(1− γ1)(1 + γ1 + · · ·+ γt−11 )

=
γt−11 ∇w(1) + · · ·+∇w(t)

1 + γ1 + · · ·+ γt−11

That is,

m̂(t) = a1∇w(1) + · · ·+ at∇w(t)

where, ak =
γt−k
1

1+γ1+···+γt−1
, k = 1, · · · , t.
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Note that

• aj > 0

•
∑t
j=1 aj = 1

• aj/aj+1 = γ1 ≤ 1

We can easily see that 1 − γt1 is the normalizing term and that the above result of m̂(t) is a

exponential moving average of ∇w(j), where j = 1, · · · , t.
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Similarly, we can get the general solution of v(t) and v̂(t). Denote (∇w(t))2 = ∇w(t) � ∇w(t)

and if ε = 0, they are expressed as the following.

v(t) = γt−12 (1− γ2)(∇w(1))2 + · · ·+ (1− γ2)(∇w(t))2

v̂(t) =
γt−12 (∇w(1))2 + · · ·+ (∇w(t))2

1 + γ2 + · · ·+ γt−12

We can easily see that the above result of v̂(t) is a exponential moving average of (∇w(j))2

where j = 1, · · · , t.
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Finally, we can get the ∆w(i).

∆w(t) = −η
(
γt−11 ∇w(1) + · · ·+∇w(t)

1 + γ1 + · · ·+ γt−11

)

�
(
γt−12 (∇w(1))2 + · · ·+ (∇w(t))2

1 + γ2 + · · ·+ γt−12

)−1/2
.
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• if γ1 = 0 and denominator of ∆w(t),

√
γt−1
2 (∇w(1))2+···+(∇w(t))2

1+γ2+···+γt−1
2

is 1, then Adam is same

as Stochastic gradient descent algorithm with random batch.

• if γ1 = 0 then ∆w(t) = −ηt∇w
(t)
√
v

with ηt = η(1− γt2).

Adam is extended RMSprop which contains moment parameter and adaptive learning rate pa-

rameter.
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• Stochastic Gradient Methods in Pytorch : torch.optim

• https://pytorch.org/docs/stable/optim.html

• SGD example: https://arxiv.org/pdf/1512.03385.pdf

• RMSprop example: https://papers.nips.cc/paper/5955-convolutional-lstm-network-a-

machine-learning-approach-for-precipitation-nowcasting.pdf
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