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• Golden Section algorithm

• Gradient descent algorithm

• Newton-Raphson algorithm
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Definition 1 (Unconstrained optimization problem)

minimize
x∈dom(f)

f(x)
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Golden section algorithm

Minimization method for a continuous function f on R

(1) Set an interval [a0, b0].

(2) Set two points c1 < c2 in the interval.

(3) Evaluate f(c1) and f(c2)

(4) If f(c1) < f(c2) then drop interval (c2, b0] and denote a0 and c2 by a1 and b1.

(5) If f(c1) ≥ f(c2) then drop interval [a0, c1) and denote c1 and b0 by a1 and b1.

(6) repeat (2)-(5) until the length of intervals becomes less than the predetermined precision

level.
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Idea of Golden section algorithm

• First, choose c1 as an approximation of the minimizer in [a0, b0].

• Second, choose c2 in [a0, b0]. Suppose that c1 < c2.

• If f(c1) < f(c2), then c2 becomes a new right limit of the range containing a minimizer.

• If f(c1) > f(c2), then c2 becomes a new approximation of the minimizer. In addition, c1
becomes a new left limit of the range containing a minimizer.

Here, we ignore the optimal selection of c1 and c2.
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Figure 1: (Golden) search algorithm
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Definition 2 (Descent Method)

Consider the update rule:

• Set a current solution x ∈ Rp

• Set an updating direction u ∈ Rp and update the next solution by

x+ = x+ ηu

for a positive learning rate η.

If there exist η > 0 and u ∈ R such that f(x+)− f(x) < 0, then we say that the algorithm is a

descent method for minimizing f .
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Proposition 1 (Descent method for convex functions)

Suppose that f is differentiable and convex. If an algorithm is a descent method, then it is

necessary that u>∇f(x) < 0.
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(proof) By convexity and differentiability of f

f(y) ≥ f(x) +∇f(x)>(y − x)

for all x and y. Replacing y with x+ and write the inequality in terms of η and u, then

f(x+ ηu)− f(x)

η
≥ ∇f(x)>u

Assume that for some u, the left side is strictly less than 0, then necessarily ∇f(x)>u < 0.
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Gradient Descent Algorithm

(1) Set t = 0 and an initial value x(t).

(2) Obtain ∇f(x(t)) and set

x(t+1) = x(t) − ηt∇f(x(t))

for ηt > 0

(3) t→ t+ 1 and repeat (2) until the solution converges.
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Figure 2: Gradient descent algorithm
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Gradient Descent Method: the first order approximation

f(x) ' f(x(t)) +∇f(x(t))>(x− x(t)),

which is a locally approximated function. The GD updates the current solution with the direction

of decreasing the value of the approximated linear function.
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Coordinate descent algorithm

(1) Set k = 0 and let an initial x(k) ∈ R.

(2) Find the direction j = argmaxk

∣∣∣∂f(x)∂xk

∣∣∣
(3) Obtain the solution

x̂
(t+1)
j = argminx∈Rf(x

(t)
1 , · · · , x(t)j−1, x, x

(t)
j+1, · · · , x

(t)
p )

and let

x(t+1) = (x
(t)
1 , · · · , x(t)j−1, x

(t+1)
j , x

(t)
j+1, · · · , x

(t)
p )

(4) t→ t+ 1 and repeat (2) until the solution converges.
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Coordinate descent algorithm
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Optimality function for the strictly convex function

Assume that f : R→ R is strictly convex and differentiable. If x∗ satisfies f ′(x∗) = 0, then x∗

is the unique minimizer.

Therefore, it is sufficient to solve the equation ∇f(x∗) = 0 for obtaining the minimizer of f .
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The Newton-Raphson method is an algorithm to solve the nonlinear equations. We let the

estimating equation be ∇f(x) = 0 for x ∈ R, and assume that ∇f is differentiable. Then, the

Newton-Raphson algorithm is following:

Newton-Raphson method on R

(1) Set t = 0 and an initial value x(t).

(2) Obtain x(t+1) which is a solution of ∇2f(x(t))(x− x(t)) +∇f(x(t)) = 0

(3) t→ t+ 1 and repeat (2) until the solution converges.
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Under some conditions, the convergence of the solution is proved. The Newton-Raphson method

is illustrated in figure 1.
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Second-order approximation

Let the objective function be f : Rp 7→ R. Set an initial solution x(k) for k = 0 and consider the

second order approximation of f(x) at x(k).

f(x) ' Q(x;x(k)) = f(x(k)) +∇f(x(k))>(x− x(k))

+
1

2
(x− x(k))>∇2f(x(k))(x− x(k)).

The function Q(x;x(k)) is a quadratic function. Investigate the minimizer of Q.
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First order approximation of ∇f(x)

∇f(y) ' ∇f(x) +∇2f(x)(y − x)

Thus,

∇f(x+ s) ' ∇f(x) +∇2f(x)s
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Second-order approximation: minimizer of Q(x;x(k))

∂Q(x;x(k))

∂x
= ∇f(x(k)) +∇2f(x(k))(x− x(k)).

Let ∇f(x(k)) +∇2f(x(k))(x− x(k)) = 0. The minimizer of Q is given by

x = x(k) −∇2f(x(k))−1∇f(x(k)),

which is an equal procedure in the Newton-Raphson method.
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contour plot

Figure 3: contour plot of an l(x)
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set an initial

Figure 4: contour plot of an l(x)
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Quadratic approximation and updating solution

Figure 5: dashed curve is the contour of quadratic function approximated at the initial points
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Quadratic approximation and updating solution

Figure 6: dashed curve is the contour of quadratic function approximated at the updated points
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Newton-Raphson algorithm

(1) Set t = 0 and an initial value x(t) ∈ Rp.

(2) compute the gradient ∇f(x(t)) and the Hessian H = ∇2f(x(t)).

(3)

x(t+1) ← x(t) −H−1∇f(x(t))

where H is hessian matrix of F .

(4) t→ t+ 1 and repeat (2) until the solution converges.
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Note

The drawbacks of a second-order approximation method are as follows: 1) The computation of the

Hessian matrix requires substantial computational resources, and 2) the second-order approximation may

be inaccurate when an initial value is far away from the optimal solution, leading to convergence issues.

For these reasons, corrective methods for improving the accuracy of the solution are often employed.

• Trust region method

• Line search method

• Backtracking method
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Figure 7: Failed step in Newton- Raphason algorithm
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Trust region

Let x(t) be a current solution and let x(t) + δ(t) be the updated solution. We approximate the

value of the objective function at the updated solution by

f(x(t) + δ) ' f(x(t)) +∇f(x(t))>δ +
1

2
δ>Hδ ≡ q(δ)

and let δ(t) = −H−1∇f(x(t)), the minimizer of q(δ), then this algorithm becomes the Newton

algorithm.
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Trust region

If the norm of δ(t) is too large, we may be concerned with the approximation of q(δ) to f(x(t)+δ).

We expect q(δ) to be close to f(x(t) + δ) (in fact, this is the reason why we minimize q(δ)) but

we cannot trust the approximation anymore for such large δ(t).
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Trust region

Instead, we constrain the norm of δ:

δ = argminδ q(δ)

subject to ‖δ‖22 ≤ γ2t

This is the l2 shrinkage to prevent too large δ, and it is known that the shrinkage is the eigenvalue

regularization of H in q(δ).

Department of Statistics, University of Seoul Unconstrained Problem and Algorithm 30 / 48



Figure 8: Trust region method
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Line Search

Let δ(t) = −H−1∇f(x(t)) and find the minimizer

α∗ = argminαf(x(t) + αδ(t)).

Update the solution by

x(t+1) = x(t) + α∗δ(t)
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Figure 9: Line search method
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Backtracking

A kind of inexact line search

Minimize

f(x(t) + αδ(t))

for α = 1, τ, τ2, · · ·
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Example 3 (Logistic regression model)

• y ∈ {0, 1} and xi ∈ Rp

• y|x ∼ Bernoulli(θ(xi;β)) where

θ(x;β) =
exp(x>β)

1 + exp(x>β)
.

• Let (yi,xi) for i = 1, · · · , n be independent random samples, then the negative

loglikelihood function is given by

l(β) =
1

n

n∑
i=1

[−yix>i β + log(1 + exp(x>i β))]
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The partial derivative of l(β) is given by

∂

∂βk
l(β) =

1

n

n∑
i=1

[
− yixik +

xik exp(x>i β)

1 + exp(x>i β)

]
= − 1

n

∑
i

xik

(
yi −

exp(x>i β)

1 + exp(x>i β)

)
for all k.

Since ŷ =
exp(x>

i β)

1+exp(x>
i β)

, we can write

∂

∂β
l(β) = −X>(y − ŷ)/n
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The hessian matrix H evaluated at β is given by

(H)jk =
1

n

n∑
i=1

xijxik exp(xTi β)

(1 + exp(xTi β))2
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Using matrix notations

H = X>WX/n

where W is the n× n diagonal matrix whose elements are

exp(x>i β)

(1 + exp(x>i β))2

for i = 1, · · · , n.
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Example 4 (Possion regression)

• y ∈ Z+ and xi ∈ Rp

• y|x ∼ Poisson(θ(xi;β)) where

θ(x;β) = exp(xTβ)

• Let (yi,xi) for i = 1, · · · , n be independent random samples, then the negative

loglikelihood function is given by

l(β) = − 1

n

n∑
i=1

(
yix
>
i β − exp(x>i β)] + log yi!

)
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The estimating equation in the Poisson regression model is given by

∂

∂βk
l(β) = −

n∑
i=1

[yixik − xik exp(x>i β)] = 0.

for all k. Thus ∇l(β) = −X>(Y − Ŷ ).

The Hessian matrix H is given by

(H)jk =
1

n

n∑
i=1

xijxik exp(xTi β),

and thus H = X>WX/n, where W = diag(exp(x>1 β), · · · , exp(x>nβ))
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Appendix

Let f : R2 7→ R2 and denote the image of f by (f1(x1, x2), f2(x1, x2)), where fj : R2 7→ R

ex) f(x1, x2) = (x1, x
2
1 + x2)

How to write the change of output f according to a small perturbation? → Jacobian!

Jf (x) =

(
∂f1(x1,x2)

∂x1

∂f1(x1,x2)
∂x2

∂f2(x1,x2)
∂x1

∂f2(x1,x2)
∂x2

)
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Appendix

Composition and derivatives

Let h : Rp 7→ Rq and f : Rq 7→ R (f and h are continuously differentiable.)

∂

∂x1
f(h(x1, · · · , xp))?

Let h(x1, · · · , xp) = (h1(x1, · · · , xp), · · · , hp(x1, · · · , xp)) where hj : Rp 7→ R. Jacobian of h

is given by

Jh(x) =


∂h1(x)
∂x1

· · · ∂h1(x)
∂xp

...
...

...
∂hq(x)
∂x1

· · · ∂hq(x)
∂xp


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Appendix

Composition and derivatives

Let z = f(u1, · · · , uq). By fundamental lemma

dz =
∂z

u1
∆u1 + · · ·+ ∂z

uq
∆uq.

Let uj = hj(x) then

∂

∂x1
f(h(x1, · · · , xp)) =

q∑
j=1

∂f(u)

∂uj

∂hj(x)

∂x1

= (Jh(x)>∇f(u))[0, :]
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Appendix

Composition and derivatives

∂f(h)

∂x
= Jh(x)>∇f(u)
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Appendix

Jacobian and Hessian

Let f : x ∈ Rp 7→ R and ∇f = (f1, · · · , fp)>, where fi is the derivative of f . The Hessian

matrix is the Jacobian matrix of ∇f .

J∇f (x) =
∇f
∂x>

=


∂f1(x)
∂x1

· · · ∂f1(x)
∂xp

...
...

...
∂fp(x)
∂x1

· · · ∂fp(x)
∂xp

 = ∇2f

The hessian matrix of f represents the change of ∇f according to a small perturbation of x.
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Appendix

Directional derivatives

Let f : Rp 7→ R and let v ∈ Rp. Denote fj(x) = ∂f(x)
∂xj

.

∂f(x+ tv)

∂t
=

p∑
j=1

fj(x+ tv)vj = ∇f(x+ tv)>v

Thus, the direction derivatives along to v are equal to ∇f(x)>v.
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Appendix

Directional derivatives

Conversely ∇f(x)>v is approximated by the direction derivatives along to v:

∇f(x)>v ' f(x+ tv)− f(x)

t
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Appendix

Hessian and Directional derivatives

(∇2f)v = J∇f (x)v =


∑p
j=1

∂f1(x)
∂xj

vj
...∑p

j=1
∂fp(x)
∂xj

vj

 =

∇f1(x)>v
...

∇fp(x)>v

 '
(f1(x+ tv)− f1(x))/t

...

(fp(x+ tv)− f1(x))/t


as t→ 0. In summary,

(∇2f)v ' t−1(∇f(x+ tv)−∇f(x))

as t→ 0.
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