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SECANT METHOD
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Newton method vs. Secant Method

The common goal is to find the solution of f ′(x) = 0

• (Newton method) For an existing approximator x(t), the next solution is updated by a

linear equation, f ′(x(t)) + f ′′(x(t))(x− x(t)) = 0.

x(t+1) = x(t) − f ′′(x(t))f(x(t))

• (Secant method) For two existing approximators x(t) and x(t+1), the next solution is

updated by a linear equation, f ′(x(t)) +
(
f ′(x(t+1))−f ′(x(t))

x(t+1)−x(t)

)
(x− x(t)) = 0.

x(t+2) = x(t) −
(
f ′(x(t+1))− f ′(x(t))

x(t+1) − x(t)

)−1
f ′(x(t)).
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Figure 1: Left: Newton method. Right: Secant method
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Secant condition

The next solution is equally given by the two different equations:

f ′(x(t)) +B(x− x(t)) = 0 (1)

f ′(x(t+1)) +B(x− x(t+1)) = 0, (2)

where B =
(
f ′(x(t+1))−f ′(x(t))

x(t+1)−x(t)

)
.

That is, x(t+2) = x(t)−B−1f ′(x(t)) = x(t+1)−B−1f ′(x(t+1)) and x(t+1)−x(t) = B−1(f ′(x(t+1))−
f ′(x(t))). Thus,

B(x(t+1) − x(t)) = (f ′(x(t+1))− f ′(x(t))).
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Definition 1 (Secant condition)

An approximation of the hessian matrix B satisfies that

B(x(t+1) − x(t)) = ∇f(x(t+1))−∇f(x(t))
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Approximation of Hessian matrix

Let f : Rn 7→ R be convex and twice differentiable. The Hessian matrix satisfies

∇f(x)−∇f(x+ s) ' −∇2f(x+ s)s

Let x(k+1) = x(k) + s(k). When the computation of ∇2f(x(k+1)) is practically difficult, an

approximation of ∇2f(x(k+1)), Bk+1, is desired to satisfy

∇f(x(k+1)) ' ∇f(x(k)) +Bk+1(x
(k+1) − x(k)).

The secant condition for Bk+1 is written by

∇f(x(k+1))−∇f(x(k)) = Bk+1(x
(k+1) − x(k)).
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Outline of Quasi-Newton Method

1. For k = 0, x(k) and Bk are initialized.

2. ∇f(x(k)) is computed and x(k+1) follows by

x(k+1) = x(k) − (Bk)
−1∇f(x(k))

3. ∇f(x(k+1)) is computed.

4. Bk+1 is updated.

Before the step 4, new information is sk = x(k+1) − x(k) and yk = ∇f(x(k+1)) − ∇f(x(k)).
Note that we let Bk+1sk = yk by the secant condition.
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Update of Bk+1

• Rank 1 update

Bk+1 = Bk + avkv
>
k

• Rank 2 update

Bk+1 = Bk + αuku
>
k + βvkv

>
k
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(Symmetric Rank-1 update)

Since Bk+1sk = Bksk + avkv
>
k sk or yk − Bksk = a(v>k sk)vk, vk ∝ yk − Bksk. Let vk =

d(yk −Bksk) then

yk −Bksk = ad2((yk −Bksk)>sk)(yk −Bksk)

Let d2 = 1/((yk −Bksk)>sk) and a = sign((yk −Bksk)>sk). Thus,

vk =
1√

(yk −Bksk)>sk
(yk −Bksk)

and the update rule is given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)>

(yk −Bksk)>sk
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(Rank-2 update: BFGS)

Since Bk+1sk = Bksk + α(u>k sk)uk + β(v>k sk)vk,

yk −Bksk = α(u>k sk)uk + β(v>k sk)vk

Let uk = yk and vk = Bksk then α(u>k sk) = 1 and β(v>k sk) = −1. Since α = 1/(y>k sk) and

β = −1/(s>k Bksk),

Bk+1 = Bk +
yky
>
k

y>k sk
− Bksks

>
k B
>
k

s>k Bksk
.
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Broyden-Fletcher-Goldfarb-Shanno algorithm

(1) Set k = 0, let an initial x(k) and an initial Hessian matrix Bk.

(2) Find the direction sk = −B−1k ∇f(x(k)).
(4) Update x(k+1) = x(k) + sk.

(5) Update Bk+1 = Bk +
yky
>
k

y>k sk
− Bksks

>
k B
>
k

s>k Bksk
, where yk = ∇f(x(k+1))−∇f(x(k)).

(6) Repeat (2)-(5) until the solution converges.
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Broyden-Fletcher-Goldfarb-Shanno update rule

(1) Set k = 0, let an initial x(k) and an initial Hessian matrix Bk.

(2) Find the direction pk = −B−1k ∇l(x(k)).
(3) (Line search) Find a step size αk = argminαl(x

(k) + αpk).

(4) Update x(k+1) = x(k) + αkpk.

(5) Update Bk+1 = Bk +
yky
>
k

y>k sk
− Bksks

>
k B
>
k

s>k Bksk
,

where sk = αkpk and yk = ∇l(x(k+1))−∇l(x(k)).
(6) Repeat (2)-(5) until the solution converges.
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Symmetric Rank-1 algorithm

Let Hk = B−1k For step (5), by Sherman-Morrison formula,

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

>

(sk −Hkyk)>yk
(3)

• When (sk −Hkyk)
>yk < 0, the nonnegative definiteness of Hk+1 can be violated.

• When (sk −Hkyk)
>yk is close to zero, the updating process becomes unstable.
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BFGS algorithm

For step 5, by Sherman-Morrison formula,

Hk+1 =

(
I − sky

>
k

y>k sk

)
Hk

(
I − yks

>
k

y>k sk

)
+
sks
>
k

y>k sk
. (4)

When Hk is positive definite and y>k sk > 0, then Hk+1 is also positive definite. The line search

is required for y>k sk > 0 (see the strong Wolfe Condition).
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Total derivatives of f

Let f : Rn 7→ Rk If there exists a linear map g : Rn 7→ Rk such that

‖f(x0 + h)− f(x0)− gh‖ → 0

as ‖h‖ → 0

we call g the total derivative of f at x0. Note that g is a linear map depending on x0 (in fact n× k
matrix). Let d(h;x0) = f(x0 + h)− f(x0) then g is an approximation of the map d. Now replace f by

∇f . What is g?
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L-BFGS algorithm

Limited-memory BFGS

(1) Set k = 0, and let an initial x(k).

(2) Let an q = ∇l(x(k)).
(3) For i = k − 1, ..., k −m :

• αi =
s>i q

y>i si
.

• q = q − αiyi.

(4) γk =
s>k−1yk−1

y>k−1yk−1
, H0

k = γkI and z = −H0
kq.

(5) For i = k −m, ..., k − 1 :

• βi =
y>i z

y>i si
.

• z = z − si(αi − βi)

(6) Repeat (2)-(5) until the solution converges.
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MM ALGORITHM
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Definition 2 (Majorized function)

Let f, g : Rp → R. If g(x|x(t)) ≥ f(x) for all x and g(x(t)|x(t)) = f(x(t)) then we call

g(x|x(t)) is a majorized function of f at x(t).
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Example 3 (Quantile loss function)

The loss function l(·; q) : R→ R is given by

l(x; q) =

{
qx , x ≥ 0

−(1− q)x , x < 0

for 0 < q < 1. Then a majorized function of f at x∗ 6= 0 is given by

g(x|x∗) = 1

4|x∗|
x2 + (q − 1

2
)x+

|x∗|
4
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Figure 2: A majorized function of quantile loss
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proof) Let g(x|x∗) = ax2 + bx + c. There are four sufficient conditions for g(x|x∗) to be a

majorized function of f at x∗ 6= 0 :

• (b− q)2 − 4ac = 0 and (b− q + 1)2 − 4ac = 0 : b = q − 1/2

• 2ax∗ + b = q : a = 1/4x∗

• a(x∗)2 + bx∗ + c = qx∗ : c = x∗/4
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Example 4 (Quantile regression)

Let the risk function

L(β) =

n∑
i=1

l(yi − x>i β; q)

for 0 < q < 1. Then a majorized function of L(β; q) at β∗ is given by

g(β|β∗) =
n∑
i=1

1

4|r∗i |
(yi − x>i β)

2 + (q − 1

2
)(yi − x>i β) +

|r∗i |
4

where r∗i = yi − x>i β
∗. Note that g(β|β∗) is quadratic function.
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MM algorithm (Majorize-Minimization or Minorize-Maximization)

minimize x f(x)

• Give a initial solution x(0) and let t = 0.

• Obtain the majorized function at x(t): q(x|x(t))
• Minimize the majorized function and let the minimizer x(t+1).

• t← t+ 1 and repeat steps 2-4 until the solution converges.
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Proposition 1 (Descent property of MM algorithm)

If a sequence of x(t) for t = 1, 2, · · · is obtained by MM algorithm, then

f(x(t+1)) ≤ f(x(t))

for all t. It means that the value of the object function evaluated at the solution always

non-decreasing. Moreover, if f is strictly convex and x(t+1) 6= x(t), then the values are always

decreasing.
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proof)

f(x(t)) = q(x(t)|x(t))
≥ q(x(t+1)|x(t))
≥ f(x(t+1))

• By definition of the majorized function the first equality holds.

• Since x(t+1) is the minimizer of q(x|x(t)), the first inequality holds.

• By definition of the majorized function the third inequality holds.
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Figure 3: illustration of MM algorithm

(Q) What is the key to the success of MM algorithm?
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APPLICATIONS

• Huberized regression

• Logistic regression (for stable computation)

• Bradley-Terry model
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Huberized regression

Let a loss function l(z; d) = 1
2z

2I(|z| ≤ d) + (d|z| − d2/2)I(|z| > d) where I(·) is the indicator

function. When d =∞, the loss function is L2 loss function.

The regression estimator of regression model with huberized loss function is defined by

β̂ = argmin
β

1

n

n∑
i=1

l(yi − x>i β; d)

β̂ is robust to the error distribution of the assumed linear model. When the error variance is

infinite, the estimator enjoys good asymptotic properties.
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Here we will show the algorithm to obtain the Huberized regression estimator. We can decompose

the function as

l(z; d) = l(1)(z; d) + l(2)(z; d)

where

l(1)(z; d) = z2/2

and

l(2)(z; d) = (|z|+ d2/2− z2/2− d)I(|z| > d).

Department of Statistics, University of Seoul Unconstrained Problem and Algorithm 31 / 56



Figure 4: decomposition of Huber loss
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Then, l(2)(z; d) is a differentiable concave function and

l(1)(z; d) +∇l(2)(z∗; d)(z − z∗) + l(2)(z∗; d)

is a majorized function of l(z; d) at z∗ (by concavity of l(2)). That is,

l(z; d) ≤ l(1)(z; d) +∇l(2)(z∗; d)(z − z∗) + l(2)(z∗; d)

Using this inequality, we construct MM algorithm for regression model with huber loss.

cf) CCCP algorithm
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MM algorithm for the huberized regression

1. Let k = 0 and set an initial estimator β(k)

2. Repeat:

• Obtain the majorized function of 1
n

∑n
i=1 l(yi − x>

i β; d) at β
(k):

Q(β|β(k)) =
n∑

i=1

l(1)
(
(yi − x>

i β; d)

+∇l(2)(yi − x>
i β

(k); d)(x>
i β − x>

i β
(k))

+l(2)(yi − x>
i β

(k); d)

)
,

which is a quadratic function.

• Minimize Q(β|β(k)) and update β(k)

• k → k + 1
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Logistic regression

• y ∈ R and x ∈ Rp and y|x ∼ Bernoulli(θ(x;β)), where

θ(x;β) =
exp(x>β)

1 + exp(x>β)
.

• Let (yi,xi) for i = 1, · · · , n be independent random samples, then the negative

loglikelihood function is given by

l(β) =
1

n

n∑
i=1

[−yix>i β + log(1 + exp(x>i β))]
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Assume that
∑n
i=1 xix

>
i /n ∈ Rp×p is positive definite. For a fixed β there exists β̃ ∈ B = {b ∈

Rp : b = hβ + (1− h)β̂
(k)
, 0 ≤ h ≤ 1} such that

l(β) = l(β̂
(k)

) +∇l(β̂
(k)

)>(β − β(k)) +
1

2
(β − β(k))>∇2l(β̃)(β − β(k)).
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Let A = 1
4

∑n
i=1 xix

>
i then it can be shown that A−∇2l(β̃) is nonnegative definite, that is

(β − β(k))>A(β − β(k)) ≥ (β − β(k))>∇2l(β̃)(β − β(k)). (5)

Moreover, we know that (β − β(k))>A(β − β(k)) ≥ supβ̃(β − β(k))>∇2l(β̃)(β − β(k)).

Hence, from (5),

l(β) ≤ l(β̂
(k)

) +∇l(β̂
(k)

)>(β − β(k)) +
1

2
(β − β(k))>A(β − β(k)),

which is a majorizing function of l(β) at β(k).
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Consider a trick to solve logistic regression by L2 regression package for stable computation. Let

X = [x1 : x2 : · · · : xn]′, and Y = (y1, · · · , yn)′, and θ(xi;β) =
exp(x′iβ)

(1+exp(x′iβ))
. For convenience

denote θ(xi; β̂
(k)

) by θ̂i and let θ̂ = (θ̂1, · · · , θ̂n)′. Note that

• X ′X =
∑n
i=1 xix

′
i

• X ′(θ̂ − Y ) = ∇l(β̂
(k)

).
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Write the majorized function of l(β) at β(k) by

Q(β|β(k)) = l(β̂
(k)

) +∇l(β̂
(k)

)′(β − β(k))

+
1

2
(β − β(k))′A(β − β(k))

= l(β̂
(k)

)− (Y − θ̂)′X(β − β(k))

+
1

8
(β − β(k))′X ′X(β − β(k))

=
1

2
‖2(Y − θ̂) +Xβ(k)/2−Xβ/2‖2 + const
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Let Ỹ = 2(Y − θ̂) + Xβ(k)/2 and X̃ = X/2, then the Q(β|β̂
(k)

) can be regarded as the

empirical risk function of the regression models

Ỹ = X̃β + ε.

Thus, we can use the l2 regression package to minimize Q(β|β̂
(k)

). The algorithm for logistic

regression models by l2 regression package follows (you can see the original idea in Section 3 of

[Friedman et al., 2010]).
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Logistic regression with l2 regression package

1. Set k = 0 and an initial β̂
(k)

and let X̃ = X/2

2. Compute Ỹ = 2(Y − θ̂) +Xβ(k)/2

3. Solve Ỹ ∼ X̃ by l2 regression package, and obtain the solution β̂

4. Update β̂
(k+1)

by β̂

5. k → k + 1 and repeat (2-4) until the solution converges.
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Bradley-Terry model

Ranking data commonly arise from situations where it is desired to rank a set of individuals or

objects in accordance with some criterion.

Two types of ranking data

• Ranking comes from a set of assigned scores.

ex) University ranking

• Ranking directly observed.

ex) Horse racing game
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There are three components consisting in ranking data.

• Comparison(game): a unit acting to assign orders for some criterion.

• Item(player): object to be assigned orders in a game.

• Ranking: resulting orders from a game.

Notation

• Let S be a set of items in a comparison.

• Let R be rank-vector obtained from the comparison.

• Denote the events that an item j1 is ranked higher than j2 by (j1 → j2).
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The Bradley-Terry Model [Bradley and Terry, 1952] is one of the most popular parametric prob-

ability models for ranking (see [Hunter, 2004]).

• When p items are to be ranked, the model assumes positive valued p parameters

(u1, · · · , up) representing utilities of items.

• Higher ui, higher the probability of the item i being top ranked.

For identifiability, let up = 1.
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Consider an event

(j1 → j2)

and let r be the rank-vector corresponding to the event.

Then,

Pr(R = r) =
uj1

uj1 + uj2

Department of Statistics, University of Seoul Unconstrained Problem and Algorithm 45 / 56



Likelihood

Let Di = {(j, k) : j, k ∈ Si, j 6= k} and yijk = I(Rij < Rik).

L(u) =
n∏
i=1

∏
(j,k)∈Di

(
uj

uj + uk

)yijk ( uk
uj + uk

)1−yijk

subject to up = 1 and uj > 0.
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Let wjk be the number of winnings of item j against k. Then the loglikelihood is simply written

by

l(u) = logL(u) =

p∑
j=1

p∑
k=1

[wjk log(uj)− wjk log(uj + uk)]

MLE is given by

û = argminu>0,up=1 − l(u)
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−l(u) = −
p∑
j=1

p∑
k=1

wjk [log(uj)− log(uj + uk)]

≤ −
p∑
j=1

p∑
k=1

wjk

[
log(uj)−

uj + uk
ũj + ũk

− log(ũj + ũk) + 1

]

by log x ≤ log(x̃) + 1
x̃ (x− x̃) = log x̃+ x/x̃− 1.
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Thus,

Q(u|ũ) = −
p∑
j=1

p∑
k=1

wjk

[
log(uj)−

uj + uk
ũj + ũk

− log(ũj + ũk) + 1

]

is the majorized function of −l(u) at ũ, where ũ = (ũ1, · · · , ũp).
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• Note that Q(u|ũ) ≥ −l(u), and the equality holds only when u = ũ

• Next, define the m-th coordinate function of Q(u|ũ) by

Qm(u|ũ) = Q((ũ1, · · · , ũm−1, u, ũm+1, · · · , ũp)|ũ).

Qm(u|ũ) ≥ −l(u) for all u > 0 and the equality holds when u = ũm.

We use the majorized function of −l(u) at ũ by Qm(u|ũ).
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In finding maximizer Q(u|ũ), we just consider a function of um that

g(um) =

p∑
k=1

wmk

[
log(um)− um

ũm + ũk

]
+

p∑
k=1

wkm

[
− um
ũm + ũk

]

• Note that the differential function of g(um) is given by

g′(um) =

p∑
k=1

wmk

[
1

um
− 1

ũm + ũk

]
+

p∑
k=1

wkm

[
− 1

ũm + ũk

]

• Hence the minimizer of g(um) is obtained by the solution of g′(um) = 0, which is given by

ûm =

[
p∑
k=1

wmk

]
p∑
k=1

[
Nmk

ũm + ũk

]−1
where Nmk = wmk + wkm ( the number of games between j and k ).
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(j, k) 1 2 3 · · · k · · · p
∑p
k=1 wjk

1 0 1 2 · · · w1k · · · 2 17

2 3 0 1 · · · w2k · · · 0 12
...

...
...

...
...

...
...

...
...

p 1 1 0 · · · wpk · · · 0 21∑p
j=1 wjk 10 5 2 · · · wpk · · · 0 N

Table 1: summary of pairwise comparisons

(wjk: # of i’s wins against j, Njk = wjk + wkj : # of matches between i and j)
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One cycle of MM algorithm

(1) Let ũ and set m = 1

(2) Obtain ûm.

(3) Update the m-th coordinate of ũ by ûm and m← m+ 1.

(4) Repeat (2)-(3) until m = p.

Repeat the one cycle MM algorithm, we obtain the MLE of the Bradley-Terry model.
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Discussion

• Newton Raphson algorithm is applicable to obtaining MLE of the Bradley-Terry model?

• What’s the advantage of the MM algorithm for obtaining the MLE of the Bradley-Terry

model?

• Read [Hunter and Lange, 2004]
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HW

• Prove (3).

• Prove (4).

• Prove (5).

• Write three manual codes of the logistic regression model with the gradient descent

method, the Newton-Raphson method, and the BFGS algorithm.

• Write a manual code of the Huberized regression with MM-algorithm and check the

descent property.

• Write a manual code of the Bradley-Terry model with MM algorithm and check the

descent property.
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