
Unconstrained Problem and Algorithm III

Jong-June Jeon

October 13, 2025

Department of Statistics, University of Seoul

Department of Statistics, University of Seoul Unconstrained Problem and Algorithm 1 / 19



Hessian matrix approximation
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Let f : R2 7→ R2 and denote the image of f by (f1(x1, x2), f2(x1, x2)), where fj : R2 7→ R

ex) f(x1, x2) = (x1, x
2
1 + x2)

How to write the change of output f according to a small perturbation? → Jacobian!

Jf (x) =

(
∂f1(x1,x2)

∂x1

∂f1(x1,x2)
∂x2

∂f2(x1,x2)
∂x1

∂f2(x1,x2)
∂x2

)
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Composition and derivatives

Let h : Rp 7→ Rq and f : Rq 7→ R (f and h are continuously differentiable.)

∂

∂x1
f(h(x1, · · · , xp))?

Let h(x1, · · · , xp) = (h1(x1, · · · , xp), · · · , hp(x1, · · · , xp)) where hj : Rp 7→ R. Jacobian of h

is given by

Jh(x) =


∂h1(x)
∂x1

· · · ∂h1(x)
∂xp

...
...

...
∂hq(x)
∂x1

· · · ∂hq(x)
∂xp


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Composition and derivatives

Let z = f(u1, · · · , uq). By fundamental lemma

dz =
∂z

u1
∆u1 + · · ·+ ∂z

uq
∆uq.

Let uj = hj(x) then

∂

∂x1
f(h(x1, · · · , xp)) =

q∑
j=1

∂f(u)

∂uj

∂hj(x)

∂x1

= (Jh(x)>∇f(u))[0, :]
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Composition and derivatives

∂f(h)

∂x
= Jh(x)>∇f(u)
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Jacobian and Hessian

Let f : x ∈ Rp 7→ R and ∇f = (f1, · · · , fp)>, where fi is the derivative of f . The Hessian

matrix is the Jacobian matrix of ∇f .

J∇f (x) =
∇f
∂x>

=


∂f1(x)
∂x1

· · · ∂f1(x)
∂xp

...
...

...
∂fp(x)
∂x1

· · · ∂fp(x)
∂xp

 = ∇2f

The Hessian matrix of f represents the change of ∇f according to a small perturbation of x.
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Directional derivatives

Let f : Rp 7→ R and let v ∈ Rp. Denote fj(x) = ∂f(x)
∂xj

.

∂f(x+ tv)

∂t
=

p∑
j=1

fj(x+ tv)vj = ∇f(x+ tv)>v

Thus, the direction derivatives along to v are equal to ∇f(x)>v.
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Directional derivatives

Conversely ∇f(x)>v is approximated by the direction derivatives along to v:

∇f(x)>v ' f(x+ tv)− f(x)

t
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Hessian and Directional derivatives

(∇2f)v = J∇f (x)v =


∑p
j=1

∂f1(x)
∂xj

vj
...∑p

j=1
∂fp(x)
∂xj

vj

 =

∇f1(x)>v
...

∇fp(x)>v

 '
(f1(x+ tv)− f1(x))/t

...

(fp(x+ tv)− f1(x))/t


as t→ 0. In summary,

(∇2f)v ' t−1(∇f(x+ tv)−∇f(x))

as t→ 0.
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Sherman–Morrison Formula
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Sherman–Morrison Formula Statement. Let A ∈ Rn×n be invertible and u, v ∈ Rn. If 1 +

v>A−1u 6= 0, then

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

Condition:

1 + v>A−1u 6= 0 (otherwise A+ uv> is singular).

Interpretation:

• Efficiently updates the inverse when A is modified by a rank-1 matrix uv>.

• Avoids recomputing the full inverse (O(n3)); only needs O(n2) work.
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Sketch of Derivation We seek X = (A+ uv>)−1 such that

(A+ uv>)X = I.

Rearranging:

AX + u(v>X) = I ⇒ X = A−1 −A−1u(v>X).

Multiply by v>:

v>X = v>A−1 − v>A−1u(v>X)⇒ (1 + v>A−1u)v>X = v>A−1.

Substitute back:

X = A−1 − A−1uv>A−1

1 + v>A−1u
.
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Extension: Sherman–Morrison–Woodbury Identity

For rank-k updates with U, V ∈ Rn×k and C ∈ Rk×k:

(A+ UCV >)−1 = A−1 −A−1U(C−1 + V >A−1U)−1V >A−1.

Special case: k = 1 and C = 1 ⇒ original Sherman–Morrison formula.
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Strong Wolfe Conditions
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Strong Wolfe Conditions

Let φ(α) = f(xk + αpk) with descent direction pk s.t. ∂
∂αf(xk + αpk)|α=0 = ∇f(xk)>pk < 0.

Find a stepsize αk > 0 satisfying:

(Armijo) φ(αk) ≤ φ(0) + c1 αk φ
′(0),

(Strong Wolfe curvature)
∣∣φ′(αk)

∣∣ ≤ c2 ∣∣φ′(0)
∣∣.

Typical choices: c1 = 10−4, c2 ∈ [0.1, 0.9].
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Role of Strong Wolfe in BFGS: Ensuring y>k sk > 0 (See Unconstrained Problem and Algo-

rithm III).

Let pk = xk+1 − xx and assume that ∇f(xk)>pk < 0. Define φ(α) = f(xk + αpk), so

φ′(0) = ∇f(xk)>pk < 0 and

y>k sk = αk (φ′(αk)− φ′(0)) .

Strong Wolfe curvature gives |φ′(αk)| ≤ c2|φ′(0)| with 0 < c2 < 1, hence φ′(αk) ≥ c2 φ
′(0).

Therefore,

y>k sk = αk(φ′(αk)− φ′(0)) ≥ αk(c2 − 1)φ′(0) > 0.

Conclusion: Strong Wolfe + descent direction ⇒ y>k sk > 0.
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2) If s>k yk > 0, then BFGS preserves positive definiteness (PD) BFGS update in the

inverse-Hessian form (Bk � 0):

ρk :=
1

y>k sk
> 0, Bk+1 = (I − ρksky>k )Bk(I − ρkyks>k ) + ρksks

>
k .
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For any nonzero vector z 6= 0:

z>Bk+1z =
(
(I − ρkyks>k )z

)>
Bk
(
(I − ρkyks>k )z

)︸ ︷︷ ︸
≥0

+ρk(s>k z)
2 (≥ 0).

• The first term is > 0 since Bk � 0 and (I − ρkyks>k )z 6= 0.

• If (I − ρkyks>k )z = 0, then z = ρkyk(s>k z). In this case, z 6= 0⇒ s>k z 6= 0, so the second

term ρk(s>k z)
2 > 0.

Hence, both terms cannot vanish simultaneously:

z>Bk+1z > 0 ∀z 6= 0 ⇒ Bk+1 � 0.
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