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Hessian matrix approximation
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Let f: R? — R? and denote the image of f by (fi(z1,22), fo(z1,22)), where f; : R? — R
ex) f(z1,22) = (21,27 + 22)

How to write the change of output f according to a small perturbation? — Jacobian!

Of1(z1,x2)  Of1(z1,22)
_ ox Ox-
J1(@) = | opslerzs)  0falmrsm)

oxq Oxo

Department of Statistics, University of Seoul Unconstrained Problem and Algorithm 3/19



Composition and derivatives

Let h: RP +— R? and f: R?— R (f and h are continuously differentiable.)

0
Tm (h('xh o 7IIJ))?
Let h(z1,--- ,2p) = (ha(z1, -+ ,2p), -, hp(x1,- -+ ,zp)) where h; : RP +— R. Jacobian of h
is given by
Bhl(ac) . ahl(x)
Oz Oy
In(z) = : . ;
Ohg(x) L Ohg(x)
oz Oy

Department of Statistics, University of Seoul Unconstrained Problem and Algorithm 4/19



Composition and derivatives

Let z = f(uq,--- ,uq). By fundamental lemma
0 0
dz = ZAuy + -+ = A,
U1 Ug

Let u; = hj(x) then

|
—~ <
=
—
&,
—
<
e
<
~—
~—
=)

Department of Statistics, University of Seoul Unconstrained Problem and Algorithm 5/19



Composition and derivatives
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Jacobian and Hessian

Let f: 2 € RP — Rand Vf = (f1,- -, fp) ", where f; is the derivative of f. The Hessian
matrix is the Jacobian matrix of V f.

3?(30) 3g1(ﬂ?)
v X1 Tp
Jw(x)za%: 8 3 3 =9y
O fp(x) .. Ofp(x)
oz Oy

The Hessian matrix of f represents the change of V f according to a small perturbation of x.
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Directional derivatives

Let f: R” > R and let v € R?. Denote f;(z) = %512,

of J:—i—tv ija:—&—tv . =Vf(x+tv)"

Thus, the direction derivatives along to v are equal to Vf(x) "
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Directional derivatives

Conversely Vf(x) v is approximated by the direction derivatives along to v:

fz +tv) — f(2)
t

Vi(z) v~
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Hessian and Directional derivatives

i B\ (VA@TY (Al +t) — i)/t
(V2 f)v = Jyy(z)v = : = : ~ '

P 2@y ) \VR@ T \(fle +tv) — fil@)/t

as t — 0. In summary,
(V2o =t~ H(Vf(z + tv) — Vf(z))

ast — 0.
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Sherman—Morrison Formula
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Sherman—Morrison Formula Statement. Let A € R™*" be invertible and u,v € R™. If 1 +
vl A=y # 0, then

A lypT AL
A Nttt — —
(A+uv) 1+0vTA 1y
Condition:
1+v A 'u #0 (otherwise A+ uv' is singular).
Interpretation:

e Efficiently updates the inverse when A is modified by a rank-1 matrix uv .

e Avoids recomputing the full inverse (O(n?)); only needs O(n?) work.
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Sketch of Derivation We seek X = (A +uv")~! such that

(A+uw")X =1

Rearranging:
AX+u('X)=1 = X=A"1-Alu0"X).

Multiply by v T
vV X =v" AT —wTAT 0 T X) = 1+ A )T X =0T A7

Substitute back:
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Extension: Sherman—Morrison—-Woodbury Identity

For rank-k updates with U,V € R"*¥ and C' € RF*F:

A+UCV ) l=A"1— A WU(C 1 +VTAIU) 'V TAL

Special case: £ =1 and C = 1 = original Sherman—Morrison formula.
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Strong Wolfe Conditions
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Strong Wolfe Conditions

Let ¢(a) = f(zxr + api) with descent direction py s.t. % (zk + api)|a=o = Vf(zx) "pr < 0.
Find a stepsize o > 0 satisfying:

(Armijo)  ¢(ar) < ¢(0) + c1 ax ¢(0),

(Strong Wolfe curvature) |¢(ay)| < 2 |¢/(0)].
Typical choices: ¢; = 1074, ¢z € [0.1,0.9].
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Role of Strong Wolfe in BFGS: Ensuring y,jsk > (0 (See Unconstrained Problem and Algo-
rithm 111).

Let pr = Tpy1 — T, and assume that Vf(xy) pr < 0. Define ¢(a) = f(zx + apr), so
¢'(0) = Vf(zx) pr <0 and

Y sk = o (¢ (o) — ¢'(0)) .

IN

Strong Wolfe curvature gives |¢/(ax)| < c2|¢/(0)] with 0 < ca < 1, hence ¢'(ax) > 2 ¢'(0).

Therefore,
y sk = ar(¢(ax) — ¢'(0)) = ar(cz — 1)¢(0) > 0.

Conclusion: Strong Wolfe + descent direction =y, s, > 0.
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2) If sy, > 0, then BFGS preserves positive definiteness (PD) BFGS update in the
inverse-Hessian form (By;, > 0):

1
Pk =

= e 0,  Brr1= (I — prstp )Be(I — pryrsy ) + prsesy -
Yk 9k
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For any nonzero vector z # 0:

.
2T Birz = (- puest)2) Be((I = prgst)2) +or(sq 2)? (2 0).

>0

e The first term is > 0 since By = 0 and (I — pryxs] )z # 0.

o If (I — pryrsy )z =0, then z = pryi(s] 2). In this case, z # 0 = s} z # 0, so the second
term pi (s 2)2 > 0.

Hence, both terms cannot vanish simultaneously:

zTBkHz >0 Vz#0 = By > 0.
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