Vector Optimization

Jong-June Jeon

November 23, 2025

Department of Statistics, University of Seoul

Dual Cone and Generalized inequality

Definition 1 (Cone)

A set $K \subseteq \mathbb{R}^n$ is a *cone* if

$$x \in K, \ \theta \ge 0 \implies \theta x \in K.$$

Definition 2 (Proper Cone)

A cone $K \subseteq \mathbb{R}^n$ is called a *proper cone* if it satisfies:

- 1. Convex: $x, y \in K \Rightarrow \theta x + (1 \theta)y \in K, \forall \theta \in [0, 1].$
- 2. Closed: K is a closed set.
- 3. **Solid:** $int(K) \neq \emptyset$.
- 4. Pointed: $x \in K$ and $-x \in K \implies x = 0$.

Pointed condition 은 cone 내에서 방향성있는 비교를 위해서 도입한 조건임.

Cone 을 이용하여 \mathbb{R}^n 위에서 partial ordering 을 정의

- $x \prec_K y \Leftrightarrow y x \in K$
- $x \prec_K y \Leftrightarrow y x \in \text{int}(K)$

partial ordering 으로 잘 정의되는가 확인할 수 있음

- $x \leq_K x$ for all $x \vdash x x = 0 \in K$ 를 확인
- $x \leq_K y$ and $y \leq_K x \leftarrow x = y \leftarrow y x \in K$ and $x y \in K \rightarrow x = y$ 임을 확인
- $x \preceq_K y$ and $y \preceq_K z \to x \preceq_K z$ 는 $y-x \in K$ and $z-y \in K \to z-x \in K$ 임을 확인

즉, \leq_K 가 partial ordering 임을 보일 수 있음

Examples 3

Let $K = \{c \in \mathbb{R}^b | c_1 + c_2 t + \dots + c_n t^{n-1} \ge 0 \text{ for } t \in [0,1]\}$. K is cone of polynomials of degree n-1 that are nonnegagive on [0,1]. It can be showns that K is proper.

For $c, d \in \mathbb{R}^n$, $c \leq_K d$ if and only if

$$c_1 + c_2 t + \dots + c_n t^{n-1} \le d_1 + d_2 t + \dots + d_n t^{n-1}$$

for all $x \in [0, 1]$.

Definition 4 (Minimum Element)

Let $S \subseteq \mathbb{R}^n$ and \preceq_K be a generalized inequality induced by a cone K. An element $x \in S$ is a minimum element of S if

$$x \leq_K y, \quad \forall y \in S.$$

If it exists, the minimum element is unique.

만약, $x \in S$ 가 minimum element of S w.r.t a cone K라 하자. 그러면 이는 $S \subseteq x + K$ 와 동치.

Definition 5 (Minimal Element)

An element $x \in S$ is a minimal element of S if there is no $y \in S$ such that

$$y \leq_K x$$
 and $y \neq x$

In general, a set can have many minimal elements.

만약 x가 S의 minimal element 라고 하면 x-K $\cap S=\{x\}$ 와 동치다.

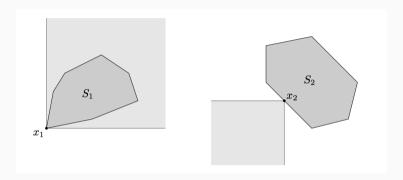


Figure 1: K is \mathbb{R}^2_+ : x_1 is the minimum element of S_1 and x_2 is a minimal element of S_2 .

Definition 6 (Dual Cone)

Given a cone $K \subseteq \mathbb{R}^n$, the *dual cone* K^* is defined as

$$K^* = \{ v \in \mathbb{R}^n \mid v^T x \ge 0, \ \forall x \in K \}.$$

- 의미1: dual cone의 기하학적 의미는 K 안의 모든 벡터와 90도 이하의 각을 이루는 벡터들의 집합.
- 의미2: $v: \mathbb{R}^n \to \mathbb{R}$ 인 linear functional 로 보았을때 ordering K를 보존하는 linear function 모임.

 $v \in K^*$ can be regarded as a map $v : \mathbb{R}^n \mapsto \mathbb{R}$. Following below shows that v preserves the order w.r.t K on the real valued space.

Let $x \leq_K y$ and let $v \in K^*$.

- $y x \in K$.
- $v^{\top}(y-x) \geq 0$ for all $v \in K^*$ by definition. That is,

$$v^{\top}x \leq v^{\top}y$$

Illustration of Dual Cone

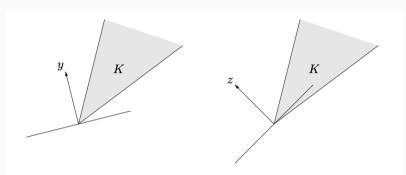


Figure 2.22 Left. The halfspace with inward normal y contains the cone K, so $y \in K^*$. Right. The halfspace with inward normal z does not contain K, so $z \notin K^*$.

Figure 2: Caption

Example 7 (Nonnegative orthant is self-dual)

Consider the cone $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n\}$. Its dual cone is defined as

$$(\mathbb{R}^n_+)^* = \{ y \in \mathbb{R}^n \mid y^T x \ge 0, \ \forall x \in \mathbb{R}^n_+ \} = \mathbb{R}^n_+$$

Proof:

- If $y \in \mathbb{R}^n_+$, then for any $x \in \mathbb{R}^n_+$, $y^T x = \sum_{i=1}^n y_i x_i \ge 0 \quad \Rightarrow \quad y \in (\mathbb{R}^n_+)^*$.
- If $y \notin \mathbb{R}^n_+$, then there exists j such that $y_j < 0$. Take $x = e_j \in \mathbb{R}^n_+$, the j-th standard basis vector. Then

$$y^T x = y_i < 0,$$

contradicting the definition of the dual cone.

Hence,

$$(\mathbb{R}^n_+)^* = \mathbb{R}^n_+.$$

Definition 8 (Norm Cone and Dual Norm Cone)

Given a norm $\|\cdot\|$ on \mathbb{R}^n , the *norm cone* is defined as

$$C = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}.$$

The dual cone is

$$C^* = \{ (y, \alpha) \in \mathbb{R}^n \times \mathbb{R} \mid ||y||_* \le \alpha, \ \alpha \ge 0 \},$$

where $\|\cdot\|_*$ denotes the dual norm. Note that given a norm $\|\cdot\|$ on \mathbb{R}^n , the dual norm $\|\cdot\|_*$ is defined as $\|y\|_* = \sup_{\|x\| \le 1} y^T x$.

(See the Example 2.25 in p52)

Let $K \subseteq \mathbb{R}^n$ be a cone. The dual cone K^* has the following properties:

- 1. Closed convex cone: K^* is always a closed convex cone.
- 2. Inclusion reversal: If $K_1 \subseteq K_2$, then

$$K_2^* \subseteq K_1^*$$
.

- 3. If K has nonempty interior, the K^* is pointed.
- 4. If K is closed and pointed, then K^* has nonempty interior.
- 5. If K is convex and closed, $K^{**} = K$
- 6. If K is a proper cone, then so is its dual K^* and moreover $K^{**} = K$.

Definition 9 (Generalized Inequality)

Let $K \subseteq \mathbb{R}^n$ be a proper cone. For $x, y \in \mathbb{R}^n$, we define

$$x \leq_K y \iff y - x \in K$$
,

and the strict inequality as

$$x \prec_K y \iff y - x \in \text{int}(K).$$

Proposition 1 (Dual Generalized Inequality)

Let $K \subseteq \mathbb{R}^n$ be a proper cone with dual cone

$$K^* = \{ z \in \mathbb{R}^n \mid z^T x \ge 0, \ \forall x \in K \}.$$

Then for any $x, y \in \mathbb{R}^n$,

$$x \preceq_K y \iff z^T x \leq z^T y \quad \forall z \in K^*,$$

 $x \prec_K y \iff z^T x < z^T y \quad \forall z \in K^* \setminus \{0\}.$

Generalized inequality는 dual cone을 통해 실수에 대한 부등식으로써 동일하게 표현할 수 있다는 뜻임. (K^* 내의 모든 linear function 에 대해서 값의 순서를 유지한다는 뜻)

Theorem 10 (Alternatives for linear strict generalized inequalities)

Let $K \subseteq \mathbb{R}^m$ be a proper cone. $Ax \prec_K b$ is infeasible where $x \in \mathbb{R}^m$ if and only if there exists λ such that

$$\lambda \neq 0$$
, $\lambda \succeq_{K^*} 0$, $A^{\top} \lambda = 0$, $\lambda^{\top} b \leq 0$.

proof) (⇒) Define two convex sets

$$S_1 = \{ b - Ax \mid x \in \mathbb{R}^m \}, \qquad S_2 = \text{int } K.$$

The assumption that the system $Ax \prec_K b$ is infeasible means $S_1 \cap S_2 = \emptyset$. Since S_1 is an affine set and S_2 is an open convex set, the separating hyperplane theorem implies that there exist $\lambda \neq 0 \in \mathbb{R}^m$ and $\mu \in \mathbb{R}$ such that

$$\lambda^{\top}(b - Ax) \le \mu \quad \text{for all } x, \tag{1}$$

$$\lambda^{\top} y \ge \mu \quad \text{for all } y \in \text{int } K.$$
 (2)

(1) is impossible unless $A^{\top}\lambda=0$. Thus $\lambda^{\top}b\leq\mu$. (2) is only possible when $\lambda\in K^*$ and $\mu\leq0$. (If $\mu=\mu_0>0$ is set, then $\lambda^{\top}y\geq\mu_0/t$ for t>0 since $ty\in \mathrm{int}K$.)

Combining with $\lambda^\top b \leq \mu$ and $\mu \leq 0$ gives $\lambda^\top b \leq 0$. In summary, the infeasibility implies that

$$\lambda \neq 0, \quad \lambda \succeq_{K^*} 0, \quad A^{\top} \lambda = 0, \quad \lambda^{\top} b \leq 0.$$

 (\Leftarrow) Suppose that ..

Proposition 2 (Characterization of Minimum Element)

Let K be a proper cone. An element $x^* \in S$ is a minimum element of S if and only if

$$\lambda^T x^* \le \lambda^T x, \quad \forall x \in S, \ \forall \lambda \in K^*,$$

where K^* is the dual cone of K.

Proposition 3 (Minimum element and supporting hyperplanes)

An element $x^* \in S$ is a minimum element of S if and only if for every $\lambda \in \operatorname{int} K^*$, the hyperplane

$$H_{\lambda} = \{ x \in \mathbb{R}^n \mid \lambda^T x = \lambda^T x^* \}$$

is a supporting hyperplane of S at x^* .

(Recall) If $a \neq 0$ satisfies $a^{\top}x \leq a^{\top}x_0$ for all $x \in C$, then the hyperplane $\{x : a^{\top}x = a^{\top}x_0\}$ is called a supporting hyperplane to C.

Illustration of Dual Cone

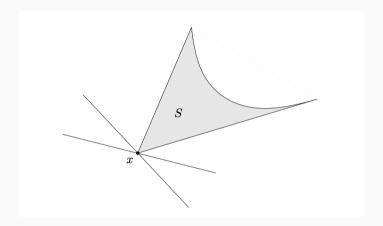


Figure 3: Caption

Proposition 4 (Dual Characterization of Minimal Elements)

Let $S \subseteq \mathbb{R}^n$ and \preceq_K be a generalized inequality induced by a proper cone K with dual cone K^* . An element $x^* \in S$ is a minimal element of S if there exists some $\lambda \in \text{int } K^*$ such that

$$\lambda^T x^* < \lambda^T x, \quad \forall x \in S \setminus \{x^*\}.$$

(proof) Suppose that x^* is not minimal of S. There exists $z \in S$ such that $z \leq_K x^*$ and $z \neq x^*$. $\lambda^\top z \leq \lambda^\top x^* < \lambda^\top x$ for all $x \in S \setminus \{x^*\}$, which is contradiction.

Note that the converse is in general false. When S is convex, the converse is true for $\lambda \succeq_K 0$.

Illustration of Dual Cone

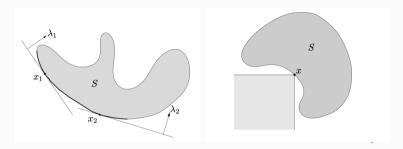


Figure 4: Left: x_1 and x_2 are minimal of S; Right: x is a minimal of S but there is such a λ in Proposition 4

Definition 11 (Pareto Optimal Production Point)

Let $K = \mathbb{R}^m_+ = \{u \in \mathbb{R}^m \mid u_i \geq 0, i = 1, \dots, m\}$ and $S \subseteq \mathbb{R}^m_+$ be the production possibility set. A point $x^* \in S$ is Pareto optimal (i.e., a K-minimal element of S) if

$$\nexists x \in S$$
 such that $x \leq_K x^*$ and $x \neq x^*$.

Equivalently, there is no feasible point that (componentwise) produces at least as much of every good and strictly more of at least one good.

The Pareto optimal production frontier of S is the set of all Pareto optimal points:

$$\mathcal{P}(S) = \left\{ x^* \in S \mid \nexists x \in S \text{ with } x \leq_K x^*, \ x \neq x^* \right\}.$$

Convexity with respect to generalized inequality

Definition 12 (*K***-nondecreasing function)**

Let $K \subseteq \mathbb{R}^n$ be a proper cone. A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be K-nondecreasing if

$$x \leq_K y \Rightarrow f(x) \leq f(y).$$

- K-nondecreasing 함수는 cone K가 정의하는 순서에 대해 단조증가하는 함수.
- \bullet $K=\mathbb{R}^n_{\perp}$ 면 우리가 아는 좌표별 증가 함수와 같다.

Proposition 5 (Gradient condition for monotonicity)

Let $K \subseteq \mathbb{R}^n$ be a proper cone and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then f is K-nondecreasing if and only if

$$\nabla f(x) \succeq_{K^*} 0 \quad \forall x \in \mathbb{R}^n$$

That is, $\nabla f(x) \in K^*$, $\forall x \in \mathbb{R}^n$, where K^* is the dual cone of K.

Definition 13 (*K***-convex function)**

Let $K \subseteq \mathbb{R}^m$ be a proper cone. A function $F : \mathbb{R}^n \to \mathbb{R}^m$ is said to be K-convex if

$$F(\theta x + (1 - \theta)y) \leq_K \theta F(x) + (1 - \theta)F(y), \quad \forall x, y \in \mathbb{R}^n, \ \theta \in [0, 1].$$

Equivalently,

$$\theta F(x) + (1 - \theta)F(y) - F(\theta x + (1 - \theta)y) \in K.$$

Proposition 6 (Scalarization of K-convexity)

Let $K \subseteq \mathbb{R}^m$ be a closed convex cone with dual K^* , and let $F : \mathbb{R}^n \to \mathbb{R}^m$.

- 1. If F is K-convex, then for every $w \in K^*$ the scalar function $\phi_w(x) = w^T F(x)$ is convex.
- 2. Conversely, if ϕ_w is convex for every $w \in K^*$, then F is K-convex.

 (\Rightarrow) Assume F is K-convex. Then for all x,y and $\lambda \in [0,1]$ we have

$$\lambda F(x) + (1 - \lambda)F(y) - F(\lambda x + (1 - \lambda)y) \in K.$$

Let $w \in K^*$. By the definition of the dual cone, $\langle w, z \rangle \geq 0 \quad \forall z \in K$. Applying $\langle w, \cdot \rangle$ to the above K-inclusion yields

$$\lambda w^{\top} F(x) + (1 - \lambda) w^{\top} F(y) - w^{\top} F(\lambda x + (1 - \lambda)y) \ge 0.$$

Thus

$$w^{\top} F(\lambda x + (1 - \lambda)y) \le \lambda w^{\top} F(x) + (1 - \lambda) w^{\top} F(y),$$

which shows that $w^{\top}F$ is convex.

(\Leftarrow) Assume that $w^{\top}F$ is convex for every $w \in K^*$. Then for all $x, y, \lambda \in [0, 1]$, and $w \in K^*$, $w^{\top}F(\lambda x + (1 - \lambda)y) \leq \lambda \, w^{\top}F(x) + (1 - \lambda) \, w^{\top}F(y)$. Rearranging,

$$\langle w, \lambda F(x) + (1 - \lambda)F(y) - F(\lambda x + (1 - \lambda)y) \rangle \ge 0 \quad \forall w \in K^*.$$

Thus,

$$\lambda F(x) + (1 - \lambda)F(y) - F(\lambda x + (1 - \lambda)y) \in (K^*)^*.$$

Since K is a closed convex cone, it is bidual, i.e. $(K^*)^* = K$. Hence,

$$F(\lambda x + (1 - \lambda)y) \leq_K \lambda F(x) + (1 - \lambda)F(y),$$

showing that F is K-convex.

Proposition 7 (Gradient condition for K-convexity)

Let $K \subseteq \mathbb{R}^m$ be a proper cone and $F : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. Then F is K-convex if and only if

$$F(y) \succeq_K F(x) + \nabla F(x)(y - x), \quad \forall x, y \in \mathbb{R}^n,$$

where $\nabla F(x)$ denotes the Jacobian of F at x.

Theorem 14 (Composition rule for K-convex functions)

Let $K \subseteq \mathbb{R}^m$ be a proper cone. Suppose $F : \mathbb{R}^n \to \mathbb{R}^m$ is K-convex and $h : \mathbb{R}^m \to \mathbb{R}$ is convex and K-nondecreasing. Then the composition

$$\phi(x) = h(F(x))$$

is a convex function on \mathbb{R}^n .

Vector Optimization

Problem 15 (Vector Optimization with Constraints)

$$\min_{x \in \mathbb{R}^n} F(x) = (f_1(x), f_2(x), \dots, f_m(x)) \text{ w.r.t } K$$

$$s.t. \ g_i(x) \le 0, \quad i = 1, \dots, p,$$

$$h_j(x) = 0, \quad j = 1, \dots, q.$$

(That is, by criterion $F(x) \leq_K F(y)$)

Definition 16 (Pareto optimal point)

A feasible point $x^* \in \mathcal{X}$ is called *Pareto optimal* if there is no $x \in \mathcal{X}$ such that

$$F(x) \leq_K F(x^*)$$
 and $F(x) \neq F(x^*)$.

Definition 17 (Achievable objective values)

Let $\mathcal{X}_{\mathrm{feas}}$ denote the feasible set of a vector optimization problem. The set of *achievable objective values* is

$$\mathcal{F} = \{ F(x) \in \mathbb{R}^m \mid x \in \mathcal{X}_{\text{feas}} \}.$$

Proposition 8 (Optimality condition via achievable set)

Let $\mathcal{O} = \{F(x) \mid x \in \mathcal{X}_{\text{feas}}\}$ be the set of achievable objective values, and let K be a proper cone. Then a feasible point x^* is Pareto optimal if and only if

$$\mathcal{O} \subset F(x^*) + K$$
.

Proposition 9 (Characterization of Pareto optimal points)

Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be the vector objective, $\mathcal{X}_{\text{feas}}$ the feasible set, and

$$\mathcal{O} = \{ F(x) \mid x \in \mathcal{X}_{\text{feas}} \}$$

the set of achievable objective values. Let $K \subseteq \mathbb{R}^m$ be a proper cone.

A feasible point $x^* \in \mathcal{X}_{\text{feas}}$ is Pareto optimal if and only if

$$\mathcal{O} \subset F(x^*) + K$$
,

where

$$F(x^*) + K = \{ F(x^*) + k \mid k \in K \}.$$

Remark 1

The condition $\mathcal{O} \subset F(x^*) + K$ means that every achievable objective value is greater than or equal to $F(x^*)$ with respect to the generalized inequality \leq_K . Thus $F(x^*)$ is a minimal element of the set \mathcal{O} , and therefore x^* is a Pareto optimal solution.

Proposition 10 (Scalarization ⇒ **Pareto optimality)**

Let $X \subset \mathbb{R}^n$ be convex and $F: X \to \mathbb{R}^m$. Let $K \subset \mathbb{R}^m$ be a proper cone with nonempty interior, and let K^* denote its dual cone. Suppose that $w \in \operatorname{int} K^*$ and $x^* \in X$ satisfies

$$w^{\top} F(x^{\star}) \leq w^{\top} F(x) \quad \forall x \in X.$$

Then x^* is Pareto optimal (i.e. K-efficient).

(\Rightarrow) Assume for contradiction that x^* is not Pareto optimal. Then there exists x such that $F(x) \preceq_K F(x^*)$ and $F(x) \neq F(x^*)$. By the definition of the K-order, this means $F(x^*) - F(x) \in K$. Since $w \in K^*$ and $F(x^*) - F(x) \in K$, we have

$$\langle w, F(x^*) - F(x) \rangle > 0.$$

Equivalently,

$$w^{\top} F(x^{\star}) > w^{\top} F(x),$$

which contradicts the optimality of x^* for the scalarized problem $\min_{x \in X} w^\top F(x)$.

Hence such an x cannot exist, and x^* must be Pareto optimal.

Proposition 11 (Pareto optimality \Rightarrow Scalarization in the K-convex case)

Let $X \subset \mathbb{R}^n$ be a nonempty convex set and $F: X \to \mathbb{R}^m$ be K-convex, where $K \subset \mathbb{R}^m$ is a closed, convex, proper cone. Assume that the upper image

$$C := F(X) + K := \{ F(x) + k \mid x \in X, k \in K \}$$

is closed and convex. Let $x^* \in X$ be a Pareto optimal point. Then there exists a nonzero $w \in K^*$ such that

$$x^* \in \arg\min_{x \in X} w^\top F(x).$$

Nondominated Sorting Genetic Algorithm-II

Nondominated Sorting Genetic Algorithm-II (maximization prob) (Link)

- Initialization: Generate initial population $P_0 = \{x_1, \dots, x_N\}$ and set t = 0.
- Combine parent and offspring: (for t > 0) If t > 0, let $R_t \leftarrow P_t \cup Q_t$; otherwise $R_0 \leftarrow P_0$.
- Fast Nondominated Sorting:

Apply nondominated sorting to R_t to obtain fronts F_1, F_2, \ldots , where $\mathcal{F}_1 = \{x \in R_t : \nexists y \in R_t, \ F(y) \prec_K F(x)\}$, and, inductively for $k \geq 2$,

$$\mathcal{F}_k = \left\{ x \in R_t \setminus \bigcup_{i=1}^{k-1} \mathcal{F}_i : \nexists y \in R_t \setminus \bigcup_{i=1}^{k-1} \mathcal{F}_i, \ F(y) \prec_K F(x) \right\}.$$

For each $x \in R_t$, set rank(x) = k if $x \in \mathcal{F}_k$.

• Crowding Distance Assignment:

For each front \mathcal{F}_k , compute the crowding distance d(x) for all $x \in \mathcal{F}_k$ by

$$d(x) = \sum_{j=1}^{m} \frac{f_j(x^{(i+1)}) - f_j(x^{(i-1)})}{\max_{y \in \mathcal{F}_k} f_j(y) - \min_{y \in \mathcal{F}_k} f_j(y)},$$

where $x = x^{(i)}$ is the *i*-th solution in \mathcal{F}_k sorted by objective f_j , and boundary solutions are assigned $d(x) = \infty$.

• Environmental Selection (Form P_{t+1}):

$$\begin{split} P_{t+1} \leftarrow \emptyset, \quad k \leftarrow 1 \\ \text{While } (|P_{t+1}| + |F_k| \leq N) : \\ P_{t+1} \leftarrow P_{t+1} \cup F_k \end{split}$$

 $k \leftarrow k + 1$

Let $L = N - |P_{t+1}|$ be the remaining slots.

From F_k , choose L individuals with the largest crowding distances and add them to P_{t+1} .

- Mating Selection (Binary Tournament): Use the binary tournament selection (Algorithm 1) with comparison rule $x >_{\mathsf{nsga}} y$ based on $(\mathsf{rank}(x), d(x))$ to obtain a mating pool M_t of size N from P_{t+1} .
- Variation (Genetic Operators):

Apply crossover and mutation to M_t to generate the offspring population Q_t of size N:

 $Q_t = \mathsf{Variation}(M_t) = \mathsf{Mutation}(\mathsf{Crossover}(M_t)).$

Algorithm 1: Binary Tournament Selection in NSGA-II

Input: Population P of size N with assigned (rank(x), d(x)) for all $x \in P$

Output: Mating pool M of size N

Comparison rule (NSGA-II):

$$x \succ_{\mathsf{NSGA}} y \iff \begin{cases} \mathrm{rank}(x) < \mathrm{rank}(y), \\ \mathrm{or} \ \big(\mathrm{rank}(x) = \mathrm{rank}(y) \ \text{ and } \ d(x) > d(y) \big). \end{cases}$$

 $M \leftarrow \emptyset$;

while |M| < N do

Select two individuals $\boldsymbol{x}, \boldsymbol{y}$ independently and uniformly at random from P ;

If
$$x \succ_{\mathsf{NSGA}} y$$
 then $M \leftarrow M \cup \{x\}$; else $M \leftarrow M \cup \{y\}$;

end

return M

Algorithm 2: Variation operator in NSGA-II

Input: Mating pool M of size N

Output: Offspring population Q of size N

$$Q \leftarrow \emptyset$$
;

for
$$i=1$$
 to $N/2$ do

select two parents p_1, p_2 from M;

$$(c_1, c_2) \leftarrow \mathsf{SBX}_{\text{-}}\mathsf{Crossover}(p_1, p_2);$$

$$c_1 \leftarrow \mathsf{PolynomialMutate}(c_1);$$

$$c_2 \leftarrow \mathsf{PolynomialMutate}(c_2);$$

$$Q \leftarrow Q \cup \{c_1, c_2\};$$

end

return Q

Simulated Binary Crossover: SBX_Crossover (p_1, p_2) returns c_1 and c_2

$$u \sim \mathcal{U}(0,1), \qquad \beta_q = \begin{cases} (2u)^{\frac{1}{\eta_c+1}}, & u \leq \frac{1}{2}, \\ \left(\frac{1}{2(1-u)}\right)^{\frac{1}{\eta_c+1}}, & u > \frac{1}{2}, \end{cases}$$

$$c_{1j} = \frac{1}{2} [(1 + \beta_q)p_{1j} + (1 - \beta_q)p_{2j}], \qquad c_{2j} = \frac{1}{2} [(1 - \beta_q)p_{1j} + (1 + \beta_q)p_{2j}].$$

 $(\eta_c > 0 \text{ is hyperparameter.})$

Polynomial Mutation: PolynomialMutate(c) returns

$$\delta_{1} = \frac{x_{j} - L_{j}}{U_{j} - L_{j}}, \qquad \delta_{2} = \frac{U_{j} - x_{j}}{U_{j} - L_{j}}, \qquad u \sim \mathcal{U}(0, 1),$$

$$\Delta_{j} = \begin{cases} \left(2u + (1 - 2u)(1 - \delta_{1})^{\eta_{m} + 1}\right)^{\frac{1}{\eta_{m} + 1}} - 1, & u < \frac{1}{2}, \\ 1 - \left(2(1 - u) + 2(u - \frac{1}{2})(1 - \delta_{2})^{\eta_{m} + 1}\right)^{\frac{1}{\eta_{m} + 1}}, & u \ge \frac{1}{2}, \end{cases}$$

$$x'_{j} = x_{j} + \Delta_{j}(U_{j} - L_{j}).$$

 U_j, L_j are upper and lower bound associated a searching range.