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Dual Cone and Generalized inequality
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Definition 1 (Cone)

A set K ⊆ Rn is a cone if

x ∈ K, θ ≥ 0 ⇒ θx ∈ K.

Definition 2 (Proper Cone)

A cone K ⊆ Rn is called a proper cone if it satisfies:

1. Convex: x, y ∈ K ⇒ θx+ (1− θ)y ∈ K, ∀θ ∈ [0, 1].

2. Closed: K is a closed set.

3. Solid: int(K) 6= ∅.
4. Pointed: x ∈ K and −x ∈ K ⇒ x = 0.

Pointed condition 은 cone 내에서 방향성있는 비교를 위해서 도입한 조건임.
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Cone 을 이용하여 Rn 위에서 partial ordering 을 정의

• x �K y ⇔ y − x ∈ K
• x ≺K y ⇔ y − x ∈ int(K)

partial ordering 으로 잘 정의되는가 확인할 수 있음

• x �K x for all x 는 x− x = 0 ∈ K 를 확인
• x �K y and y �K x 는 x = y 는 y − x ∈ K and x− y ∈ K → x = y 임을 확인

• x �K y and y �K z → x �K z는 y − x ∈ K and z − y ∈ K → z − x ∈ K 임을 확인

즉, �K 가 partial ordering 임을 보일 수 있음
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Examples 3

Let K = {c ∈ Rb|c1 + c2t+ · · ·+ cnt
n−1 ≥ 0 for t ∈ [0, 1]}. K is cone of polynomials of

degree n− 1 that are nonnegagive on [0, 1]. It can be showns that K is proper.

For c, d ∈ Rn, c �K d if and only if

c1 + c2t+ · · ·+ cnt
n−1 ≤ d1 + d2t+ · · ·+ dnt

n−1

for all x ∈ [0, 1].
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Definition 4 (Minimum Element)

Let S ⊆ Rn and �K be a generalized inequality induced by a cone K. An element x ∈ S is a

minimum element of S if

x �K y, ∀y ∈ S.

If it exists, the minimum element is unique.

만약, x ∈ S가 minimum element of S w.r.t a cone K라 하자. 그러면 이는 S ⊆ x+K 와 동치.
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Definition 5 (Minimal Element)

An element x ∈ S is a minimal element of S if there is no y ∈ S such that

y �K x and y 6= x

In general, a set can have many minimal elements.

만약 x가 S의 minimal element 라고 하면 x−K ∩ S = {x}와 동치다.
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Figure 1: K is R2
+: x1 is the mininum element of S1 and x2 is a minimal element of S2.
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Definition 6 (Dual Cone)

Given a cone K ⊆ Rn, the dual cone K∗ is defined as

K∗ = {v ∈ Rn | vTx ≥ 0, ∀x ∈ K}.

• 의미1: dual cone의 기하학적 의미는 K 안의 모든 벡터와 90도 이하의 각을 이루는

벡터들의 집합.

• 의미2: v : Rn 7→ R 인 linear functional 로 보았을때 ordering K를 보존하는 linear function

모임.
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v ∈ K∗ can be regarded as a map v : Rn 7→ R. Following below shows that v preserves the

order w.r.t K on the real valued space.

Let x �K y and let v ∈ K∗.

• y − x ∈ K.

• v>(y − x) ≥ 0 for all v ∈ K∗ by definition. That is,

v>x ≤ v>y
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Illustration of Dual Cone

Figure 2: Caption
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Example 7 (Nonnegative orthant is self-dual)

Consider the cone Rn+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}. Its dual cone is defined as

(Rn+)∗ = {y ∈ Rn | yTx ≥ 0, ∀x ∈ Rn+} = Rn+

Proof:

• If y ∈ Rn+, then for any x ∈ Rn+, yTx =
∑n
i=1 yixi ≥ 0 ⇒ y ∈ (Rn+)∗.

• If y /∈ Rn+, then there exists j such that yj < 0. Take x = ej ∈ Rn+, the j-th standard

basis vector. Then

yTx = yj < 0,

contradicting the definition of the dual cone.

Hence,

(Rn+)∗ = Rn+.
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Definition 8 (Norm Cone and Dual Norm Cone)

Given a norm ‖ · ‖ on Rn, the norm cone is defined as

C = {(x, t) ∈ Rn × R | ‖x‖ ≤ t}.

The dual cone is

C∗ = {(y, α) ∈ Rn × R | ‖y‖∗ ≤ α, α ≥ 0},

where ‖ · ‖∗ denotes the dual norm. Note that given a norm ‖ · ‖ on Rn, the dual norm ‖ · ‖∗ is

defined as ‖y‖∗ = sup‖x‖≤1 y
Tx.

(See the Example 2.25 in p52)
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Let K ⊆ Rn be a cone. The dual cone K∗ has the following properties:

1. Closed convex cone: K∗ is always a closed convex cone.

2. Inclusion reversal: If K1 ⊆ K2, then

K∗2 ⊆ K∗1 .

3. If K has nonempty interior, the K∗ is pointed.

4. If K is closed and pointed, then K∗ has nonempty interior.

5. If K is convex and closed, K∗∗ = K

6. If K is a proper cone, then so is its dual K∗ and moreover K∗∗ = K.
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Definition 9 (Generalized Inequality)

Let K ⊆ Rn be a proper cone. For x, y ∈ Rn, we define

x �K y ⇐⇒ y − x ∈ K,

and the strict inequality as

x ≺K y ⇐⇒ y − x ∈ int(K).
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Proposition 1 (Dual Generalized Inequality)

Let K ⊆ Rn be a proper cone with dual cone

K∗ = {z ∈ Rn | zTx ≥ 0, ∀x ∈ K}.

Then for any x, y ∈ Rn,

x �K y ⇐⇒ zTx ≤ zT y ∀z ∈ K∗,

x ≺K y ⇐⇒ zTx < zT y ∀z ∈ K∗ \ {0}.

Generalized inequality는 dual cone을통해실수에대한부등식으로써동일하게표현할수있다는

뜻임. (K∗ 내의 모든 linear function 에 대해서 값의 순서를 유지한다는 뜻)
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Theorem 10 (Alternatives for linear strict generalized ineqaulities)

Let K ⊆ Rm be a proper cone. Ax ≺K b is infeasible where x ∈ Rm if and only if there exists

λ such that

λ 6= 0, λ �K∗ 0, A>λ = 0, λ>b ≤ 0.
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proof) (⇒) Define two convex sets

S1 = { b−Ax | x ∈ Rm }, S2 = intK.

The assumption that the system Ax ≺K b is infeasible means S1 ∩S2 = ∅. Since S1 is an affine

set and S2 is an open convex set, the separating hyperplane theorem implies that there exist

λ 6= 0 ∈ Rm and µ ∈ R such that

λ>(b−Ax) ≤ µ for all x, (1)

λ>y ≥ µ for all y ∈ intK. (2)

(1) is impossible unless A>λ = 0. Thus λ>b ≤ µ. (2) is only possible when λ ∈ K∗ and µ ≤ 0.

(If µ = µ0 > 0 is set, then λ>y ≥ µ0/t for t > 0 since ty ∈ intK.)
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Combining with λ>b ≤ µ and µ ≤ 0 gives λ>b ≤ 0. In summary, the infeasibility implies that

λ 6= 0, λ �K∗ 0, A>λ = 0, λ>b ≤ 0.

(⇐) Suppose that ..
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Proposition 2 (Characterization of Minimum Element)

Let K be a proper cone. An element x? ∈ S is a minimum element of S if and only if

λTx? ≤ λTx, ∀x ∈ S, ∀λ ∈ K∗,

where K∗ is the dual cone of K.
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Proposition 3 (Minimum element and supporting hyperplanes)

An element x? ∈ S is a minimum element of S if and only if for every λ ∈ int K∗, the

hyperplane

Hλ = {x ∈ Rn | λTx = λTx?}

is a supporting hyperplane of S at x?.

(Recall) If a 6= 0 satisfies a>x ≤ a>x0 for all x ∈ C, then the hyperplane {x : a>x = a>x0} is

called a supporting hyperplane to C.
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Illustration of Dual Cone

Figure 3: Caption
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Proposition 4 (Dual Characterization of Minimal Elements)

Let S ⊆ Rn and �K be a generalized inequality induced by a proper cone K with dual cone

K∗. An element x∗ ∈ S is a minimal element of S if there exists some λ ∈ int K∗ such that

λTx∗ < λTx, ∀x ∈ S \ {x∗}.

(proof) Suppose that x∗ is not minimal of S. There exists z ∈ S such that z �K x∗ and z 6= x∗.

λ>z ≤ λ>x∗ < λ>x for all x ∈ S \ {x∗}, which is contradiction.

Note that the converse is in general false. When S is convex, the converse is true for λ �K 0.
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Illustration of Dual Cone

Figure 4: Left: x1 and x2 are minimal of S; Right: x is a minimal of S but there is such a λ in

Proposition 4
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Definition 11 (Pareto Optimal Production Point)

Let K = Rm+ = {u ∈ Rm | ui ≥ 0, i = 1, . . . ,m} and S ⊆ Rm+ be the production possibility

set. A point x? ∈ S is Pareto optimal (i.e., a K-minimal element of S) if

@x ∈ S such that x �K x? and x 6= x?.

Equivalently, there is no feasible point that (componentwise) produces at least as much of

every good and strictly more of at least one good.

The Pareto optimal production frontier of S is the set of all Pareto optimal points:

P(S) =
{
x? ∈ S

∣∣ @x ∈ S with x �K x?, x 6= x?
}
.
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Convexity with respect to generalized inequality
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Definition 12 (K-nondecreasing function)

Let K ⊆ Rn be a proper cone. A function f : Rn → R is said to be K-nondecreasing if

x �K y ⇒ f(x) ≤ f(y).

• K-nondecreasing 함수는 cone K가 정의하는 순서에 대해 단조증가하는 함수.

• K = Rn+ 면 우리가 아는 좌표별 증가 함수와 같다.
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Proposition 5 (Gradient condition for monotonicity)

Let K ⊆ Rn be a proper cone and f : Rn → R be differentiable. Then f is K-nondecreasing if

and only if

∇f(x) �K∗ 0 ∀x ∈ Rn

That is, ∇f(x) ∈ K∗, ∀x ∈ Rn, where K∗ is the dual cone of K.
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Definition 13 (K-convex function)

Let K ⊆ Rm be a proper cone. A function F : Rn → Rm is said to be K-convex if

F (θx+ (1− θ)y) �K θF (x) + (1− θ)F (y), ∀x, y ∈ Rn, θ ∈ [0, 1].

Equivalently,

θF (x) + (1− θ)F (y)− F (θx+ (1− θ)y) ∈ K.
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Proposition 6 (Scalarization of K-convexity)

Let K ⊆ Rm be a closed convex cone with dual K∗, and let F : Rn → Rm.

1. If F is K-convex, then for every w ∈ K∗ the scalar function φw(x) = wTF (x) is convex.

2. Conversely, if φw is convex for every w ∈ K∗, then F is K-convex.
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(⇒) Assume F is K-convex. Then for all x, y and λ ∈ [0, 1] we have

λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y) ∈ K.

Let w ∈ K∗. By the definition of the dual cone, 〈w, z〉 ≥ 0 ∀ z ∈ K. Applying 〈w, ·〉 to the

above K-inclusion yields

λw>F (x) + (1− λ)w>F (y)− w>F (λx+ (1− λ)y) ≥ 0.

Thus

w>F (λx+ (1− λ)y) ≤ λw>F (x) + (1− λ)w>F (y),

which shows that w>F is convex.
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(⇐) Assume that w>F is convex for every w ∈ K∗. Then for all x, y, λ ∈ [0, 1], and w ∈ K∗,
w>F (λx+ (1− λ)y) ≤ λw>F (x) + (1− λ)w>F (y). Rearranging,

〈w, λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y)〉 ≥ 0 ∀w ∈ K∗.

Thus,

λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y) ∈ (K∗)∗.

Since K is a closed convex cone, it is bidual, i.e. (K∗)∗ = K. Hence,

F (λx+ (1− λ)y) �K λF (x) + (1− λ)F (y),

showing that F is K-convex.
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Proposition 7 (Gradient condition for K-convexity)

Let K ⊆ Rm be a proper cone and F : Rn → Rm be differentiable. Then F is K-convex if and

only if

F (y) �K F (x) +∇F (x)(y − x), ∀x, y ∈ Rn,

where ∇F (x) denotes the Jacobian of F at x.
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Theorem 14 (Composition rule for K-convex functions)

Let K ⊆ Rm be a proper cone. Suppose F : Rn → Rm is K-convex and h : Rm → R is convex

and K-nondecreasing. Then the composition

φ(x) = h(F (x))

is a convex function on Rn.
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Vector Optimization
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Problem 15 (Vector Optimization with Constraints)

min
x∈Rn

F (x) = (f1(x), f2(x), . . . , fm(x)) w.r.t K

s.t. gi(x) ≤ 0, i = 1, . . . , p,

hj(x) = 0, j = 1, . . . , q.

(That is, by criterion F (x) �K F (y))
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Definition 16 (Pareto optimal point)

A feasible point x∗ ∈ X is called Pareto optimal if there is no x ∈ X such that

F (x) �K F (x∗) and F (x) 6= F (x∗).

Definition 17 (Achievable objective values)

Let Xfeas denote the feasible set of a vector optimization problem. The set of achievable

objective values is

F = {F (x) ∈ Rm | x ∈ Xfeas }.
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Proposition 8 (Optimality condition via achievable set)

Let O = {F (x) | x ∈ Xfeas} be the set of achievable objective values, and let K be a proper

cone. Then a feasible point x∗ is Pareto optimal if and only if

O ⊂ F (x∗) +K.
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Proposition 9 (Characterization of Pareto optimal points)

Let F : Rn → Rm be the vector objective, Xfeas the feasible set, and

O = {F (x) | x ∈ Xfeas}

the set of achievable objective values. Let K ⊆ Rm be a proper cone.

A feasible point x∗ ∈ Xfeas is Pareto optimal if and only if

O ⊂ F (x∗) +K,

where

F (x∗) +K = {F (x∗) + k | k ∈ K }.
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Remark 1

The condition O ⊂ F (x∗) +K means that every achievable objective value is greater than or

equal to F (x∗) with respect to the generalized inequality �K . Thus F (x∗) is a minimal

element of the set O, and therefore x∗ is a Pareto optimal solution.
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Proposition 10 (Scalarization ⇒ Pareto optimality)

Let X ⊂ Rn be convex and F : X → Rm. Let K ⊂ Rm be a proper cone with nonempty

interior, and let K∗ denote its dual cone. Suppose that w ∈ intK∗ and x? ∈ X satisfies

w>F (x?) ≤ w>F (x) ∀x ∈ X.

Then x? is Pareto optimal (i.e. K-efficient).
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(⇒) Assume for contradiction that x? is not Pareto optimal. Then there exists x such that

F (x) �K F (x?) and F (x) 6= F (x?). By the definition of the K-order, this means F (x?) −
F (x) ∈ K. Since w ∈ K∗ and F (x?)− F (x) ∈ K, we have

〈w,F (x?)− F (x)〉 > 0.

Equivalently,

w>F (x?) > w>F (x),

which contradicts the optimality of x? for the scalarized problem minx∈X w
>F (x).

Hence such an x cannot exist, and x? must be Pareto optimal.
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Proposition 11 (Pareto optimality ⇒ Scalarization in the K-convex case)

Let X ⊂ Rn be a nonempty convex set and F : X → Rm be K-convex, where K ⊂ Rm is a

closed, convex, proper cone. Assume that the upper image

C := F (X) +K := {F (x) + k | x ∈ X, k ∈ K }

is closed and convex. Let x? ∈ X be a Pareto optimal point. Then there exists a nonzero

w ∈ K∗ such that

x? ∈ arg min
x∈X

w>F (x).
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Nondominated Sorting Genetic Algorithm-II
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Nondominated Sorting Genetic Algorithm-II (maximization prob) (Link)

• Initialization: Generate initial population P0 = {x1, . . . , xN} and set t = 0.

• Combine parent and offspring: (for t > 0)

If t > 0, let Rt ← Pt ∪Qt; otherwise R0 ← P0.

• Fast Nondominated Sorting:

Apply nondominated sorting to Rt to obtain fronts F1, F2, . . . , where

F1 = {x ∈ Rt : @ y ∈ Rt, F (y) ≺K F (x)}, and, inductively for k ≥ 2,

Fk =

{
x ∈ Rt \

k−1⋃
i=1

Fi : @ y ∈ Rt \
k−1⋃
i=1

Fi, F (y) ≺K F (x)

}
.

For each x ∈ Rt, set rank(x) = k if x ∈ Fk.
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• Crowding Distance Assignment:

For each front Fk, compute the crowding distance d(x) for all x ∈ Fk by

d(x) =

m∑
j=1

fj(x
(i+1))− fj(x(i−1))

maxy∈Fk fj(y)−miny∈Fk fj(y)
,

where x = x(i) is the i-th solution in Fk sorted by objective fj , and boundary solutions

are assigned d(x) =∞.

• Environmental Selection (Form Pt+1):

Pt+1 ← ∅, k ← 1

While (|Pt+1|+ |Fk| ≤ N):

Pt+1 ← Pt+1 ∪ Fk
k ← k + 1

Let L = N − |Pt+1| be the remaining slots.

From Fk, choose L individuals with the largest crowding distances and add them to Pt+1.
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• Mating Selection (Binary Tournament):

Use the binary tournament selection (Algorithm 1) with comparison rule x >nsga y based

on (rank(x), d(x)) to obtain a mating pool Mt of size N from Pt+1.

• Variation (Genetic Operators):

Apply crossover and mutation to Mt to generate the offspring population Qt of size N :

Qt = Variation(Mt) = Mutation(Crossover(Mt)).
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Algorithm 1: Binary Tournament Selection in NSGA-II

Input: Population P of size N with assigned (rank(x), d(x)) for all x ∈ P
Output: Mating pool M of size N

Comparison rule (NSGA-II):

x �NSGA y ⇐⇒

rank(x) < rank(y),

or
(

rank(x) = rank(y) and d(x) > d(y)
)
.

M ← ∅ ;

while |M | < N do

Select two individuals x, y independently and uniformly at random from P ;

If x �NSGA y then M ←M ∪ {x} ;

else M ←M ∪ {y} ;

end

return M
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Algorithm 2: Variation operator in NSGA-II

Input: Mating pool M of size N

Output: Offspring population Q of size N

Q← ∅;
for i = 1 to N/2 do

select two parents p1, p2 from M ;

(c1, c2)← SBX Crossover(p1, p2);

c1 ← PolynomialMutate(c1);

c2 ← PolynomialMutate(c2);

Q← Q ∪ {c1, c2};
end

return Q
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Simulated Binary Crossover: SBX Crossover(p1, p2) returns c1 and c2

u ∼ U(0, 1), βq =


(2u)

1
ηc+1 , u ≤ 1

2 ,(
1

2(1− u)

) 1
ηc+1

, u > 1
2 ,

c1j =
1

2

[
(1 + βq)p1j + (1− βq)p2j

]
, c2j =

1

2

[
(1− βq)p1j + (1 + βq)p2j

]
.

(ηc > 0 is hyperparameter.)
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Polynomial Mutation: PolynomialMutate(c) returns

δ1 =
xj − Lj
Uj − Lj

, δ2 =
Uj − xj
Uj − Lj

, u ∼ U(0, 1),

∆j =


(
2u+ (1− 2u)(1− δ1)ηm+1

) 1
ηm+1 − 1, u < 1

2 ,

1−
(
2(1− u) + 2(u− 1

2 )(1− δ2)ηm+1
) 1
ηm+1 , u ≥ 1

2 ,

x′j = xj + ∆j(Uj − Lj).

Uj , Lj are upper and lower bound associated a searching range.
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