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Dual Cone and Generalized inequality
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Definition 1 (Cone)

A set K C R"™ is a cone if
rekK, 0>0 = 6OxrelkK.

Definition 2 (Proper Cone)

A cone K C R" is called a proper cone if it satisfies:

1. Convex: z,y € K = 0z + (1-0)y € K, V4 € [0,1].
2. Closed: K is a closed set.

3. Solid: int(K) # 0.

4. Pointed: x € K and —x ¢ K = x =0.

Pointed condition 2 cone L{O|A] RS Q= H|WE QoA QT 2AHY.
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Cone = 0|51 R™ 2|0 M partial ordering

e rgysy—xre kK
o r<xgysy—axc<int(K)

partial ordering 22 & Ho|&|=7} &olet 4~ Q)

o v < xforall z =
er=gyandy=krcr=yc=y—xcKandor—-yeK —vr=y

e x=gyandy=gz—r=3kxz2cy—cr€Kandz—yeK—sz—x¢c
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= <g 7| partial ordering 2= E&
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Examples 3

Let K = {c € R®|cy + cat + -+ c,t" 1 >0 for t € [0,1]}. K is cone of polynomials of
degree n — 1 that are nonnegagive on [0, 1]. It can be showns that K is proper.

For ¢,d € R™, ¢ <k d if and only if
G <5 @t fh 000 I @S L @l b @y I o 00 b @] T

for all z € [0, 1].
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Definition 4 (Minimum Element)

Let S C R™ and <k be a generalized inequality induced by a cone K. An element z € S is a
minimum element of S if
r gy, Vyels.

If it exists, the minimum element is unique.

OOk 2 € S7F minimum element of S w.r.t a cone K2} 5}A} J2{H Ol= S C z+ K 2 =X,
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Definition 5 (Minimal Element)
An element x € S is a minimal element of S if there is no y € S such that
y=xx and y#z

In general, a set can have many minimal elements.

2tk x7F SO| minimal element 2t1 5tH 2 — K NS = {z}2 SZ|C}.
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S1

z1

Figure 1: K is Rﬁ_: 1 is the mininum element of S; and z2 is a minimal element of Ss.
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Definition 6 (Dual Cone)
Given a cone K C R", the dual cone K* is defined as

*={weR"|vlz>0, Ve K}.

e 2[0J1: dual cone| 7|5t 2|0|= K Qo] 2= HE{t 90% 0|5t2| 25 0|F=
BIE{SO| RISt
— = ==

e 9[0]2: v : R™ — R QI linear functional 2 E S ordering K& E&5}+= linear function
Lol
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v € K* can be regarded as a map v : R™ — R. Following below shows that v preserves the
order w.r.t K on the real valued space.

Let x <k y and let v € K*.

o y—zc K.
e v'(y—x) >0 forall v € K* by definition. That is,

vl < va
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lllustration of Dual Cone

Figure 2.22 Left. The halfspace with inward normal y contains the cone K,
so y € K*. Right. The halfspace with inward normal z does not contain K,
soz ¢ K*.

Figure 2: Caption
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Example 7 (Nonnegative orthant is self-dual)
Consider the cone R} = {x € R" | z; > 0, i = 1,...,n}. Its dual cone is defined as

R ={yeR"|y"z>0, Vz e R} } =R}

Proof:

o Ify € RY, then forany z € RT, yT2 =" yx; >0 = ye (RY)"
o If y ¢ R"}, then there exists j such that y; < 0. Take z = e; € R, the j-th standard
basis vector. Then
yTz=y; <O,

contradicting the definition of the dual cone.
Hence,

(R?)* = RT.
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Definition 8 (Norm Cone and Dual Norm Cone)
Given a norm || - || on R", the norm cone is defined as

C={(z,t) eR" xR | [lz]| <t}
The dual cone is
C*={(y,0) ER" xR | |yl <, a >0},

where || - || denotes the dual norm. Note that given a norm || - || on R™, the dual norm || - ||, is
defined as [|y[[. = supy,<1 yla.

(See the Example 2.25 in p52)
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Let K C R™ be a cone. The dual cone K* has the following properties:

1.
2.

@ @& o &

Closed convex cone: K* is always a closed convex cone.

Inclusion reversal: If K; C K>, then
K5 C K7.

If K has nonempty interior, the K™ is pointed.
If K is closed and pointed, then K* has nonempty interior.
If K is convex and closed, K** = K

If K is a proper cone, then so is its dual K* and moreover K** = K.
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Definition 9 (Generalized Inequality)
Let K C R™ be a proper cone. For z,y € R™, we define
r3xy = y—xzckK,

and the strict inequality as
r<gy <— y—axcint(K).
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Proposition 1 (Dual Generalized Inequality)
Let K CR™ be a proper cone with dual cone
*={zeR" | T2 >0, Vz € K}.
Then for any x,y € R",
=gy = 2Tx<2Ty Vze K",

r<xgy <= lx<zly Vze K*\{0}.

Generalized inequality= dual cone= Saf| 240 CiSt ESAC =N SUSHH B 4
S (K™ LHe] 2. linear function Of CHSHAM 2ol =ME RX|T =)

=y

ﬁ
ol
Al
rr
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Theorem 10 (Alternatives for linear strict generalized ineqaulities)

Let K C R™ be a proper cone. Az < b is infeasible where x € R™ if and only if there exists
A such that
A#£0, A=g-0, ATA=0, A'b<0.
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proof) (=) Define two convex sets
S1={b—Azx |z eR™}, Sy = int K.

The assumption that the system Az <y b is infeasible means S; NSy = (). Since S is an affine
set and S5 is an open convex set, the separating hyperplane theorem implies that there exist
A#0€R™ and pu € R such that

A (b— Az) < p for all z, (1)
Ay >pu forallyeint K. (2)

(1) is impossible unless ATA = 0. Thus ATb < p. (2) is only possible when A\ € K* and p < 0.
(If £ = po > 0 is set, then ATy > po/t for t > 0 since ty € intK.)
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Combining with ATb < p and 1 < 0 gives ATbh < 0. In summary, the infeasibility implies that

A£0, A=g-0, ATA=0, A'b<O.

(«=) Suppose that ..
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Proposition 2 (Characterization of Minimum Element)
Let K be a proper cone. An element x* € S is a minimum element of S if and only if
Mo <Az, VzeS, VAe K,

where K* is the dual cone of K.
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Proposition 3 (Minimum element and supporting hyperplanes)

An element x* € S is a minimum element of S if and only if for every \ € int K*, the
hyperplane
Hy ={z e R" | Nz = \T2*}

is a supporting hyperplane of S at x*.

(Recall) If a # 0 satisfies a'x < a'xq for all # € C, then the hyperplane {z :a"x = a0} is

called a supporting hyperplane to C.
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lllustration of Dual Cone

Figure 3: Caption
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Proposition 4 (Dual Characterization of Minimal Elements)

Let S C R™ and <k be a generalized inequality induced by a proper cone K with dual cone
K*. An element x* € S is a minimal element of S if there exists some \ € int K* such that

Mz < ATz, VreS\{z*}.

(proof) Suppose that z* is not minimal of S. There exists z € S such that z <y 2* and z # z*.
Az < AT < ATz forall x € S\ {z*}, which is contradiction.

Note that the converse is in general false. When S is convex, the converse is true for A =g 0.
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lllustration of Dual Cone

Figure 4: Left: x1 and x2 are minimal of S; Right: = is a minimal of S but there is such a X in
Proposition 4
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Definition 11 (Pareto Optimal Production Point)

Let K =R} ={ueR™|u; >0, i=1,...,m} and S C R be the production possibility
set. A point z* € S is Pareto optimal (i.e., a K-minimal element of S) if

A2z € S such that  <x z* and z # z*.

Equivalently, there is no feasible point that (componentwise) produces at least as much of
every good and strictly more of at least one good.

The Pareto optimal production frontier of S is the set of all Pareto optimal points:

P(S) = {a* €S| Bz e Switha g z*, z# 2" }.
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Convexity with respect to generalized inequality
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Definition 12 (K -nondecreasing function)

Let K C R™ be a proper cone. A function f : R™ — R is said to be K-nondecreasing if

rxy = flz)<f(y).

e K-nondecreasing St4~= cone K7} Ao|st=
0

&AMl chel ©H2E7IeHE B4
o K =R} ® 227t 2ch

= 2 EE S/t geet

aT
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Proposition 5 (Gradient condition for monotonicity)

Let K C R™ be a proper cone and [ : R™ — R be differentiable. Then f is K-nondecreasing if

and only if
Vf(x) =g+ 0 VzeR"

That is, Vf(x) € K*, Vx € R"™ where K* is the dual cone of K.
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Definition 13 (K-convex function)
Let K C R™ be a proper cone. A function F': R™ — R™ is said to be K-convex if
F0x+ (1-0)y) =k 0F(x)+(1—-0)F(y), Vz,yc€R" 6¢c]0,1].

Equivalently,
OF(z)+ (1 —60)F(y) — F(x + (1 — 0)y) € K.
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Proposition 6 (Scalarization of K-convexity)

Let K C R™ be a closed convex cone with dual K*, and let F' : R™ — R™.

1. If F is K-convex, then for every w € K* the scalar function ¢, (x) = w” F(x) is convex.

2. Conversely, if ¢, is convex for every w € K*, then F is K-convex.
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(=) Assume F' is K-convex. Then for all 2,y and X € [0, 1] we have
AF(z)+(1—NF(y)— F(Az+ (1 - \)y) € K.

Let w € K*. By the definition of the dual cone, (w,z) > 0 Vz € K. Applying (w,-) to the
above K-inclusion yields

Aw' F(z)+ (1 -Nw'F(y) —w'FAz + (1= \)y) > 0.

Thus
w FQz+ (1-=Ny) < Aw'F(z)+ (1 =N w' F(y),

which shows that w F is convex.

Department of Statistics, University of Seoul Vector Optimization 31/51



(<) Assume that w ' F is convex for every w € K*. Then for all z,y, A € [0,1], and w € K*,
w FOx+ (1 - Ny) < Aw'F(x) + (1 — A\)w' F(y). Rearranging,

(W, \F(x) + (1= MNF(y) —FAzx+(1-Ny)) >0 YweK".

Thus,
AF(2)+ (1= NF(y) — F(x + (1= Ny) € (K*)*".

Since K is a closed convex cone, it is bidual, i.e. (K*)* = K. Hence,
F(Az + (1= N)y) =g AF(z) + (1 — N\)F(y),

showing that F'is K-convex.
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Proposition 7 (Gradient condition for K-convexity)

Let K C R™ be a proper cone and F : R™ — R™ be differentiable. Then F' is K-convex if and
only if
F(y) zx F(z) + VF(z)(y —x), Vz,y€eR",

where VF(x) denotes the Jacobian of F at x.
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Theorem 14 (Composition rule for K-convex functions)

Let K C R™ be a proper cone. Suppose F': R" — R™ js K-convex and h : R™ — R is convex
and K-nondecreasing. Then the composition

is a convex function on R™.
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Vector Optimization
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Problem 15 (Vector Optimization with Constraints)

;2]%}1 F(z) = (fi(), f2(x),. .., fm()) w.rt K

st gi(x) <0, i=1,...,p,

hj(x) =0, j=1,...,q.

(That is, by criterion F(z) <x F(y))
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Definition 16 (Pareto optimal point)
A feasible point «* € X is called Pareto optimal if there is no x € X such that

F(z) 2k F(z*) and F(x)# F(z").

Definition 17 (Achievable objective values)

Let Xfeas denote the feasible set of a vector optimization problem. The set of achievable

objective values is
]:: {F(x) ERm | UAS Xfeas}-
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Proposition 8 (Optimality condition via achievable set)

Let O = {F(x) | * € Xieas} be the set of achievable objective values, and let K be a proper
cone. Then a feasible point x* is Pareto optimal if and only if

OCF(z")+ K.
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Proposition 9 (Characterization of Pareto optimal points)
Let F': R™ — R™ be the vector objective, Xi..s the feasible set, and
O ={F(z) | © € Xteas}

the set of achievable objective values. Let K C R™ be a proper cone.

A feasible point x* € Xiens is Pareto optimal if and only if
O C F(z*)+ K,

where
Fa)+ K={F(@")+k | ke K}.
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Remark 1

The condition O C F(x*) + K means that every achievable objective value is greater than or
equal to F(x*) with respect to the generalized inequality <y . Thus F(x*) is a minimal
element of the set O, and therefore x* is a Pareto optimal solution.
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Proposition 10 (Scalarization = Pareto optimality)

Let X C R™ be convex and F': X — R™. Let K C R™ be a proper cone with nonempty
interior, and let K* denote its dual cone. Suppose that w € int K* and x* € X satisfies

w' F(z*) < w'F(z) VzeX.

Then z* is Pareto optimal (i.e. K -efficient).
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(=) Assume for contradiction that z* is not Pareto optimal. Then there exists = such that
F(z) %k F(z*) and F(x)# F(z*). By the definition of the K-order, this means F(z*) —
F(z) GK Since w € K* and F'(z*) — F'(z) € K, we have

(w, F(z*) — F(z)) > 0.

Equivalently,
w' F(z*) > w' F(x),

which contradicts the optimality of z* for the scalarized problem min,cx w' F(z).

Hence such an z cannot exist, and z* must be Pareto optimal.
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Proposition 11 (Pareto optimality = Scalarization in the K-convex case)

Let X C R™ be a nonempty convex set and F' : X — R™ be K-convex, where K C R™ is a
closed, convex, proper cone. Assume that the upper image

C:=F(X)+K:={F(x)+k|zecX, ke K}

is closed and convex. Let x* € X be a Pareto optimal point. Then there exists a nonzero

w € K* such that

* : T
3 F(x).
2" € argminw (z)
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Nondominated Sorting Genetic Algorithm-I|
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Nondominated Sorting Genetic Algorithm-Il (maximization prob) (Link)

e Initialization: Generate initial population Py = {x1,...,2x} and set t = 0.

e Combine parent and offspring: (for t > 0)
If t >0, let Ry < P, UQy; otherwise Ry < Fp.

e Fast Nondominated Sorting:
Apply nondominated sorting to R; to obtain fronts Fi, F5, ..., where
Fi={x € Ry : Py € Ry, F(y) <k F(x)}, and, inductively for k > 2,

k—1 k—1
Fr = {weRt\ UZF:dyer\|JF Fl) <KF(;L-)}.

For each = € Ry, set rank(x) = k if € F.
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https://youtu.be/sEEiGM9em8s

e Crowding Distance Assignment:
For each front Fj, compute the crowding distance d(z) for all « € F}, by

m (DY (i)
i)=Y — L&) HETT)
— maxyeF, fi(y) — minge 7, f5(y)
where 2 = z() is the i-th solution in Fj, sorted by objective fj, and boundary solutions
are assigned d(z) = cc.

e Environmental Selection (Form P;q):
P1+ 0, k<1
While (|Piy1| + |Fx| < N):
P+ P UF,
k+—k+1
Let L = N — |P;11| be the remaining slots.
From F}, choose L individuals with the largest crowding distances and add them to P, ;.
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e Mating Selection (Binary Tournament):
Use the binary tournament selection (Algorithm 1) with comparison rule x >nsga y based

on (rank(z),d(z)) to obtain a mating pool M; of size N from P; ;.

e Variation (Genetic Operators):
Apply crossover and mutation to M; to generate the offspring population @Q); of size N:

Q¢ = Variation(M;) = Mutation(Crossover(M;)).

Department of Statistics, University of Seoul Vector Optimization 47/51



Algorithm 1: Binary Tournament Selection in NSGA-II

Input: Population P of size N with assigned (rank(z),d(z)) for all z € P
Output: Mating pool M of size N

Comparison rule (NSGA-II):

rank(z) < rank(y),
T 7NSGA Y <

or (rank(z) = rank(y) and d(z) > d(y)).

M+ 0;
while |[M| < N do
Select two individuals x, y independently and uniformly at random from P ;
If £ >nsga v then M < M U {m} ;
else M «+ M U{y} ;
end
return M/
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Algorithm 2: Variation operator in NSGA-II
Input: Mating pool M of size N

Output: Offspring population @ of size N
Q « 0;
for i =1 to N/2 do
select two parents pq, po from M,
(c1,¢2) + SBX_Crossover(p1, p2);
¢1 < PolynomialMutate(c );
¢y < PolynomialMutate(cs);
Q<+ QU{cy, e}
end
return Q
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Simulated Binary Crossover: SBX_Crossover(py, pa) returns ¢; and co

(2u)7e T, u <

“ U(()’ 1)’ Bq - 1 ncl+1 1
Y2 ) u > 29
CEn AR

l\’)\»—\

Clj

l\')\)—l

(ne > 0 is hyperparameter.)
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Polynomial Mutation: PolynomialMutate(c) returns

a8 = Jag U5 = @B
1 Uj_Lja 2 Uj_Lj} u (a )a
(2u+ (1 — 2u)(1 — by)Tm+1) TrT — 1, u< i,

Ay =
1—(2(1 —w) 4+ 2(u— $)(1 = &) ) mmFT gy > 1,
z; =z + A;(U; — Lj).

J

Uj, L; are upper and lower bound associated a searching range.
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