Unconstrained Problem and Algorithm I

Jong-June Jeon
October 11, 2023
Department of Statistics, University of Seoul

- Golden Section algorithm
- Gradient descent algorithm
- Newton-Raphson algorithm

Definition 1 (Unconstrained optimization problem)

$$
\operatorname{minimize}_{x \in \operatorname{dom}_{(f)}} f(x)
$$

Golden section algorithm

Minimization method for a continuous function f on \mathbb{R}
(1) Set an interval $\left[a_{0}, b_{0}\right]$.
(2) Set two points $c_{1}<c_{2}$ in the interval.
(3) Evaluate $f\left(c_{1}\right)$ and $f\left(c_{2}\right)$
(4) If $f\left(c_{1}\right)<f\left(c_{2}\right)$ then drop interval $\left(c_{2}, b_{0}\right]$ and denote a_{0} and c_{2} by a_{1} and b_{1}.
(5) If $f\left(c_{1}\right) \geq f\left(c_{2}\right)$ then drop interval $\left[a_{0}, c_{1}\right)$ and denote c_{1} and b_{0} by a_{1} and b_{1}.
(6) repeat (2)-(5) until the length of intervals becomes less than the predetermined precision level.

Idea of Golden section algorithm

- First, choose c_{1} as an approximation of the minimizer in $\left[a_{0}, b_{0}\right]$.
- Second, choose c_{2} in $\left[a_{0}, b_{0}\right]$. Suppose that $c_{1}<c_{2}$.
- If $f\left(c_{1}\right)<f\left(c_{2}\right)$, then c_{2} becomes a new right limit of the range containing a minimizer.
- If $f\left(c_{1}\right)>f\left(c_{2}\right)$, then c_{2} becomes a new approximation of the minimizer. In addition, c_{1} becomes a new left limit of the range containing a minimizer.

Here, we ignore the optimal selection of c_{1} and c_{2}.

new winner!

defending champion!

Figure 1: (Golden) search algorithm

Definition 2 (Descent Method)

Consider the update rule:

- Set a current solution $x \in \mathbb{R}^{p}$
- Set an updating direction $u \in \mathbb{R}^{p}$ and update the next solution by

$$
x^{+}=x+\eta u
$$

for a positive learning rate η.
If there exist $\eta>0$ and $u \in \mathbb{R}$ such that $f\left(x^{+}\right)-f(x)<0$, then we say that the algorithm is a descent method for minimizing f.

Proposition 1 (Descent method for convex functions)

Suppose that f is differentiable and convex. If an algorithm is a descent method, then it is necessary that $u^{\top} \nabla f(x)<0$.
(proof) By convexity and differentiability of f

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)
$$

for all x and y. Replacing y with x^{+}and write the inequality in terms of η and u, then

$$
\frac{f(x+\eta u)-f(x)}{\eta} \geq \nabla f(x)^{\top} u
$$

Assume that for some u, the left side is strictly less than 0 , then necessarily $\nabla f(x)^{\top} u<0$.

Gradient Descent Algorithm

(1) Set $t=0$ and an initial value $x^{(t)}$.
(2) Obtain $\nabla f\left(x^{(t)}\right)$ and set

$$
x^{(t+1)}=x^{(t)}-\eta_{t} \nabla f\left(x^{(t)}\right)
$$

for $\eta_{t}>0$
(3) $t \rightarrow t+1$ and repeat (2) until the solution converges.

Figure 2: Gradient descent algorithm

Gradient Descent Method: the first order approximation

$$
f(x) \simeq f\left(x^{(t)}\right)+\nabla f\left(x^{(t)}\right)^{\top}\left(x-x^{(t)}\right)
$$

which is a locally approximated function. The GD updates the current solution with the direction of decreasing the value of the approximated linear function.

Coordinate descent algorithm

(1) Set $k=0$ and let an initial $x^{(k)} \in \mathbb{R}$.
(2) Find the direction $j=\operatorname{argmax}_{k}\left|\frac{\partial f(x)}{\partial x_{k}}\right|$
(3) Obtain the solution

$$
\hat{x}_{j}^{(t+1)}=\operatorname{argmin}_{x \in \mathbb{R}} f\left(x_{1}^{(t)}, \cdots, x_{j-1}^{(t)}, x, x_{j+1}^{(t)}, \cdots, x_{p}^{(t)}\right)
$$

and let

$$
x^{(t+1)}=\left(x_{1}^{(t)}, \cdots, x_{j-1}^{(t)}, x_{j}^{(t+1)}, x_{j+1}^{(t)}, \cdots, x_{p}^{(t)}\right)
$$

(4) $t \rightarrow t+1$ and repeat (2) until the solution converges.

Optimality function for the strictly convex function
Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly convex and differentiable. If x^{*} satisfies $f^{\prime}\left(x^{*}\right)=0$, then x^{*} is the unique minimizer.

Therefore, it is sufficient to solve the equation $\nabla f\left(x^{*}\right)=0$ for obtaining the minimizer of f.

The Newton-Raphson method is an algorithm to solve the nonlinear equations. We let the estimating equation be $\nabla f(x)=0$ for $x \in \mathbb{R}$, and assume that ∇f is differentiable. Then, the Newton-Raphson algorithm is following:

Newton-Raphson method on \mathbb{R}

(1) Set $t=0$ and an initial value $x^{(t)}$.
(2) Obtain $x^{(t+1)}$ which is a solution of $\nabla^{2} f\left(x^{(t)}\right)\left(x-x^{(t)}\right)+\nabla f\left(x^{(t)}\right)=0$
(3) $t \rightarrow t+1$ and repeat (2) until the solution converges.

Under some conditions, the convergence of the solution is proved. The Newton-Raphson method is illustrated in figure 1.

Second-order approximation

Let the objective function be $f: \mathbb{R}^{p} \mapsto \mathbb{R}$. Set an initial solution $x^{(k)}$ for $k=0$ and consider the second order approximation of $f(x)$ at $x^{(k)}$.

$$
\begin{aligned}
f(x) \simeq Q\left(x ; x^{(k)}\right)= & f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{\top}\left(x-x^{(k)}\right) \\
& +\frac{1}{2}\left(x-x^{(k)}\right)^{\top} \nabla^{2} f\left(x^{(k)}\right)\left(x-x^{(k)}\right)
\end{aligned}
$$

The function $Q\left(x ; x^{(k)}\right)$ is a quadratic function. Investigate the minimizer of Q.

First order approximation of $\nabla f(x)$

$$
\nabla f(y) \simeq \nabla f(x)+\nabla^{2} f(x)(y-x)
$$

Thus,

$$
\nabla f(x+s) \simeq \nabla f(x)+\nabla^{2} f(x) s
$$

Second-order approximation: minimizer of $Q\left(x ; x^{(k)}\right)$

$$
\frac{\partial Q\left(x ; x^{(k)}\right)}{\partial x}=\nabla f\left(x^{(k)}\right)+\nabla^{2} f\left(x^{(k)}\right)\left(x-x^{(k)}\right) .
$$

Let $\nabla f\left(x^{(k)}\right)+\nabla^{2} f\left(x^{(k)}\right)\left(x-x^{(k)}\right)=0$. The minimizer of Q is given by

$$
x=x^{(k)}-\nabla^{2} f\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right),
$$

which is an equal procedure in the Newton-Raphson method.

Figure 3: contour plot of an $l(x)$

Figure 4: contour plot of an $l(x)$

Figure 5: dashed curve is the contour of quadratic function approximated at the initial points

Figure 6: dashed curve is the contour of quadratic function approximated at the updated points

Newton-Raphson algorithm

(1) Set $t=0$ and an initial value $x^{(t)} \in \mathbb{R}^{p}$.
(2) compute the gradient $\nabla f\left(x^{(t)}\right)$ and the Hessian $H=\nabla^{2} f\left(x^{(t)}\right)$.
(3)

$$
x^{(t+1)} \leftarrow x^{(t)}-H^{-1} \nabla f\left(x^{(t)}\right)
$$

where H is hessian matrix of F.
(4) $t \rightarrow t+1$ and repeat (2) until the solution converges.

Note

The drawbacks of a second-order approximation method are as follows: 1) The computation of the Hessian matrix requires substantial computational resources, and 2) the second-order approximation may be inaccurate when an initial value is far away from the optimal solution, leading to convergence issues. For these reasons, corrective methods for improving the accuracy of the solution are often employed.

- Trust region method
- Line search method
- Backtracking method

Figure 7: Failed step in Newton- Raphason algorithm

Trust region

Let $x^{(t)}$ be a current solution and let $x^{(t)}+\delta^{(t)}$ be the updated solution. We approximate the value of the objective function at the updated solution by

$$
f\left(x^{(t)}+\delta\right) \simeq f\left(x^{(t)}\right)+\nabla f\left(x^{(t)}\right)^{\top} \delta+\frac{1}{2} \delta^{\top} H \delta \equiv q(\delta)
$$

and let $\delta^{(t)}=-H^{-1} \nabla f\left(x^{(t)}\right)$, the minimizer of $q(\delta)$, then this algorithm becomes the Newton algorithm.

Trust region

If the norm of $\delta^{(t)}$ is too large, we may be concerned with the approximation of $q(\delta)$ to $f\left(x^{(t)}+\delta\right)$. We expect $q(\delta)$ to be close to $f\left(x^{(t)}+\delta\right.$) (in fact, this is the reason why we minimize $q(\delta)$) but we cannot trust the approximation anymore for such large $\delta^{(t)}$.

Trust region
Instead, we constrain the norm of δ :

$$
\begin{aligned}
\delta= & \operatorname{argmin}_{\delta} q(\delta) \\
& \text { subject to }\|\delta\|_{2}^{2} \leq \gamma_{t}^{2}
\end{aligned}
$$

This is the l_{2} shrinkage to prevent too large δ, and it is known that the shrinkage is the eigenvalue regularization of H in $q(\delta)$.

Ridge regression (shrinkage effect to the origin)

Figure 8: Trust region method

Line Search

Let $\delta^{(t)}=-H^{-1} \nabla f\left(x^{(t)}\right)$ and find the minimizer

$$
\alpha^{*}=\operatorname{argmin}_{\alpha} f\left(x^{(t)}+\alpha \delta^{(t)}\right) .
$$

Update the solution by

$$
x^{(t+1)}=x^{(t)}+\alpha^{*} \delta^{(t)}
$$

Line search
: ID convex optimization
on the hyperplane

$$
\left\{x: \quad H^{-1} \nabla f\left(x_{0}\right)\left(x-x_{0}\right)=0\right\}
$$

Figure 9: Line search method

Backtracking

A kind of inexact line search
Minimize

$$
f\left(x^{(t)}+\alpha \delta^{(t)}\right)
$$

for $\alpha=1, \tau, \tau^{2}, \cdots$

Example 3 (Logistic regression model)

- $y \in\{0,1\}$ and $\mathbf{x}_{i} \in \mathbb{R}^{p}$
- $y \mid \mathbf{x} \sim \operatorname{Bernoulli}\left(\theta\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right)\right)$ where

$$
\theta(\mathbf{x} ; \boldsymbol{\beta})=\frac{\exp \left(\mathbf{x}^{\top} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{x}^{\top} \boldsymbol{\beta}\right)} .
$$

- Let $\left(y_{i}, \mathbf{x}_{i}\right)$ for $i=1, \cdots, n$ be independent random samples, then the negative loglikelihood function is given by

$$
l(\boldsymbol{\beta})=\frac{1}{n} \sum_{i=1}^{n}\left[-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}+\log \left(1+\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)\right)\right]
$$

The partial derivative of $l(\beta)$ is given by

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{k}} l(\boldsymbol{\beta}) & =\frac{1}{n} \sum_{i=1}^{n}\left[-y_{i} x_{i k}+\frac{x_{i k} \exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)}\right] \\
& =-\frac{1}{n} \sum_{i} x_{i k}\left(y_{i}-\frac{\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)}\right)
\end{aligned}
$$

for all k.
Since $\hat{y}=\frac{\exp \left(\mathbf{x}_{i}^{\top} \beta\right)}{1+\exp \left(\mathbf{x}_{i}^{\top} \beta\right)}$, we can write

$$
\frac{\partial}{\partial \beta} l(\beta)=-X^{\top}(y-\hat{y}) / n
$$

The hessian matrix H evaluated at β is given by

$$
(H)_{j k}=\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i j} x_{i k} \exp \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)}{\left(1+\exp \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\right)^{2}}
$$

Using matrix notations

$$
H=X^{\top} W X / n
$$

where W is the $n \times n$ diagonal matrix whose elements are

$$
\frac{\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)}{\left(1+\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)\right)^{2}}
$$

for $i=1, \cdots, n$.

Example 4 (Possion regression)

- $y \in \mathbb{Z}_{+}$and $\mathbf{x}_{i} \in \mathbb{R}^{p}$
- $y \mid \mathbf{x} \sim \operatorname{Poisson}\left(\theta\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right)\right)$ where

$$
\theta(\mathbf{x} ; \boldsymbol{\beta})=\exp \left(\mathbf{x}^{T} \boldsymbol{\beta}\right)
$$

- Let $\left(y_{i}, \mathbf{x}_{i}\right)$ for $i=1, \cdots, n$ be independent random samples, then the negative loglikelihood function is given by

$$
\left.l(\boldsymbol{\beta})=-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}-\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)\right]+\log y_{i}!\right)
$$

The estimating equation in the Poisson regression model is given by

$$
\frac{\partial}{\partial \beta_{k}} l(\boldsymbol{\beta})=-\sum_{i=1}^{n}\left[y_{i} x_{i k}-x_{i k} \exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)\right]=0
$$

for all k. Thus $\nabla l(\boldsymbol{\beta})=-X^{\top}(Y-\hat{Y})$.

The Hessian matrix H is given by

$$
(H)_{j k}=\frac{1}{n} \sum_{i=1}^{n} x_{i j} x_{i k} \exp \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right),
$$

and thus $H=X^{\top} W X / n$, where $W=\operatorname{diag}\left(\exp \left(\mathbf{x}_{1}^{\top} \boldsymbol{\beta}\right), \cdots, \exp \left(\mathbf{x}_{n}^{\top} \boldsymbol{\beta}\right)\right)$

Appendix

Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ and denote the image of f by $\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$, where $f_{j}: \mathbb{R}^{2} \mapsto \mathbb{R}$
ex) $f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}^{2}+x_{2}\right)$
How to write the change of output f according to a small perturbation? \rightarrow Jacobian!

$$
J_{f}(x)=\left(\begin{array}{ll}
\frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{2}} \\
\frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{array}\right)
$$

Appendix

Composition and derivatives

Let $h: \mathbb{R}^{p} \mapsto \mathbb{R}^{q}$ and $f: \mathbb{R}^{q} \mapsto \mathbb{R}$ (f and h are continuously differentiable.)

$$
\frac{\partial}{\partial x_{1}} f\left(h\left(x_{1}, \cdots, x_{p}\right)\right) ?
$$

Let $h\left(x_{1}, \cdots, x_{p}\right)=\left(h_{1}\left(x_{1}, \cdots, x_{p}\right), \cdots, h_{p}\left(x_{1}, \cdots, x_{p}\right)\right)$ where $h_{j}: \mathbb{R}^{p} \mapsto \mathbb{R}$. Jacobian of h is given by

$$
J_{h}(x)=\left(\begin{array}{ccc}
\frac{\partial h_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial h_{1}(x)}{\partial x_{p}} \\
\vdots & \vdots & \vdots \\
\frac{\partial h_{q}(x)}{\partial x_{1}} & \cdots & \frac{\partial h_{q}(x)}{\partial x_{p}}
\end{array}\right)
$$

Appendix

Composition and derivatives

Let $z=f\left(u_{1}, \cdots, u_{q}\right)$. By fundamental lemma

$$
d z=\frac{\partial z}{u_{1}} \Delta u_{1}+\cdots+\frac{\partial z}{u_{q}} \Delta u_{q} .
$$

Let $u_{j}=h_{j}(x)$ then

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} f\left(h\left(x_{1}, \cdots, x_{p}\right)\right) & =\sum_{j=1}^{q} \frac{\partial f(u)}{\partial u_{j}} \frac{\partial h_{j}(x)}{\partial x_{1}} \\
& =\left(J_{h}(x)^{\top} \nabla f(u)\right)[0,:]
\end{aligned}
$$

Appendix

Composition and derivatives

$$
\frac{\partial f(h)}{\partial x}=J_{h}(x)^{\top} \nabla f(u)
$$

Appendix

Jacobian and Hessian

Let $f: x \in \mathbb{R}^{p} \mapsto \mathbb{R}$ and $\nabla f=\left(f_{1}, \cdots, f_{p}\right)^{\top}$, where f_{i} is the derivative of f. The Hessian matrix is the Jacobian matrix of ∇f.

$$
J_{\nabla f}(x)=\frac{\nabla f}{\partial x^{\top}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{p}} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{p}(x)}{\partial x_{1}} & \cdots & \frac{\partial f_{p}(x)}{\partial x_{p}}
\end{array}\right)=\nabla^{2} f
$$

The hessian matrix of f represents the change of ∇f according to a small perturbation of x.

Appendix

Directional derivatives

Let $f: \mathbb{R}^{p} \mapsto \mathbb{R}$ and let $v \in \mathbb{R}^{p}$. Denote $f_{j}(x)=\frac{\partial f(x)}{\partial x_{j}}$.

$$
\frac{\partial f(x+t v)}{\partial t}=\sum_{j=1}^{p} f_{j}(x+t v) v_{j}=\nabla f(x+t v)^{\top} v
$$

Thus, the direction derivatives along to v are equal to $\nabla f(x)^{\top} v$.

Appendix

Directional derivatives

Conversely $\nabla f(x)^{\top} v$ is approximated by the direction derivatives along to v :

$$
\nabla f(x)^{\top} v \simeq \frac{f(x+t v)-f(x)}{t}
$$

Appendix

Hessian and Directional derivatives

$$
\left(\nabla^{2} f\right) v=J_{\nabla f}(x) v=\left(\begin{array}{c}
\sum_{j=1}^{p} \frac{\partial f_{1}(x)}{\partial x_{j}} v_{j} \\
\vdots \\
\sum_{j=1}^{p} \frac{\partial f_{p}(x)}{\partial x_{j}} v_{j}
\end{array}\right)=\left(\begin{array}{c}
\nabla f_{1}(x)^{\top} v \\
\vdots \\
\nabla f_{p}(x)^{\top} v
\end{array}\right) \simeq\left(\begin{array}{c}
\left(f_{1}(x+t v)-f_{1}(x)\right) / t \\
\vdots \\
\left(f_{p}(x+t v)-f_{1}(x)\right) / t
\end{array}\right)
$$

as $t \rightarrow 0$. In summary,

$$
\left(\nabla^{2} f\right) v \simeq t^{-1}(\nabla f(x+t v)-\nabla f(x))
$$

as $t \rightarrow 0$.

