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Singular Value Decomposition as an Optimal Low–Dimensional
Approximation



Singular Value Decomposition

Let X ∈ Rn×p (p < n) denote a (row-centered) data matrix whose rows are observations
and columns are variables. The singular value decomposition (SVD) factorises X as

X = UΣV>,

where
I U =

[
U1, . . . ,Up

]
∈ Rn×p contains the left singular vectors (U>U = Ip);

I V =
[
V1, . . . ,Vp

]
∈ Rp×p contains the right singular vectors (V>V = Ip);

I Σ = diag(σ1, . . . , σp) with singular values σ1 ≥ σ2 ≥ · · · ≥ σp > 0;

I r = rank(X) ≤ min{n, p}.
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Singular Value Decomposition: Example I
Let

A =

3 1
2 2
1 3

 ∈ R3×2

be a real matrix with rank p = 2. The reduced singular value decomposition (SVD)

of A is given by
A = UΣV>

where

I U =

−0.5026 0.7746
−0.5740 −0.6325
−0.6464 0.0000

 ∈ R3×2 contains the left singular vectors

(orthonormal: U>U = I2),

I Σ =

[
5.1962 0

0 1.7321

]
∈ R2×2 is the diagonal matrix of singular values,
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Singular Value Decomposition: Example II

I V =

[
−0.7071 −0.7071
−0.7071 0.7071

]
∈ R2×2 contains the right singular vectors

(orthonormal: V>V = I2).
Thus, the matrix A can be approximately reconstructed as

A ≈ UΣV> =

3 1
2 2
1 3

 .
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Data and representation

(A)ij denotes the entry of A in the row i and the column j. For i = 1, · · · , n,

xi = (X)i1e1 + · · ·+ (X)ipep ,

where {e1, . . . , ep} forms the standard basis of Rp.

I Coordinate system: (e1, · · · , ep)

I Scaling factor: (1, . . . , 1) ∈ Rp

I Representation of xi w.r.t the (e1, · · · , ep): ((X)i1, · · · , (X)ip) ∈ Rp.

How to obtain low dimensional representation of xi effectively?
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SVD: Definition & Structure

Full SVD (rank p)

X = U︸︷︷︸
n×p

Σ︸︷︷︸
p×p

V>︸︷︷︸
p×p

=

p∑
i=1

σi UiV>
i , σ1 ≥ · · · ≥ σr > 0.

UΣ =
[
U1 · · ·Up

] σ1 . . .

σp

 =
[
σ1U1 · · ·σUp

]
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SVD: Definition & Structure

X =
[
σ1U1 · · · σpUp

]


V>
1

V>
2
...

V>
p

 = σ1 U1V>
1 + · · ·+ σpUpV>

p

The example below helps understanding the above equation:u11 u21
u12 u22
u13 u23


︸ ︷︷ ︸

U∈R3×2

[
σ1v11 σ1v21
σ2v12 σ2v22

]
︸ ︷︷ ︸

ΣV>∈R2×2

=
[
U1 U2

] [β11 β12
β21 β22

]

=
[
β11U1 + β21U2 β12U1 + β22U2

]
= [β11U1 β12U1] + [β21U2 β22U2]

= U1[β11 β12] + U2[β21 β22]

= U1σ1V>
1 + U2σ2V>

2 = σ1U1V>
1 + σ2U2V>

2 .
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SVD: Definition & Structure

Our conclusion is that a data matrix X ∈ Rn×p has the following representation,

X = U︸︷︷︸
n×p

Σ︸︷︷︸
p×p

V>︸︷︷︸
p×p

=

p∑
i=1

σi UiV>
i , σ1 ≥ · · · ≥ σr > 0.

Department of Statistical Data Science 10



SVD and representation

Denote the ith row vector of X by x>
i . Then,

X =

x>
1
...

x>
n

 = UΣV> =
[
U1 · · · Up

] σ1V>
1

· · ·
σpV>

p


︸ ︷︷ ︸

=ΣV>

.

By taking transpose operator on X[
x1 · · · xn

]
=

[
σ1V1 · · · σpVp

]
U>.

Thus, x1 = σ1V1 × (U>)11 + σ2V2 × (U>)21 + · · · + σkVk × (U>)p1, which implies
(σ1(U>)11, · · · , σp(U>)p1) is a representation of x1 with respect to (V1, · · · ,Vp).
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SVD and representation

For i = 1, · · · , n,

xi = σ1(U>)1i × V1 + σ2(U>)2i × V2 + · · ·+ σp(U>)pi × Vp

and (U>)ji = Uij , the following interpretations are derived from SVD.

I New (orthonormal) coordinate system: (V1, · · · ,Vp)

I Scaling factor: (σ1, · · · , σp)

I Representation of xi w.r.t the (V1, · · · ,Vp): (σ1Ui1, · · · , σpUip).
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Singular Value Decomposition: Example I

A =

3 1
2 2
1 3

 ∈ R3×2

There is three observation in R2. x>
1 = (3, 1), the representation of the ith obs with

respect to (1, 0)>, (0, 1)>.

U =

−0.5026 0.7746
−0.5740 −0.6325
−0.6464 0.0000

 ∈ R3×2

The first row of U, (−0.5026, 0.7746) is the representation of x1 with respect to
(−0.7071,−0.7071) and (−0.7071, 0.7071).

Department of Statistical Data Science 13



Rank-k Truncated SVD: Definition & Structure

Full SVD (rank p)

X =

p∑
i=1

σi UiV>
i , σ1≥· · ·≥σp >0.

If σj ' 0 for all j > k, then X '
∑k

i=1 σi UiV>
i . That is, xi is represented based

on the basis {V1, · · · ,Vk} of a k-dimensional subspace and (Ui1, · · · ,Uik) ∈ Rk is the
rank-reduced representation of xi .

Department of Statistical Data Science 14



Rank-2 Truncated SVD: Visualization

Let Xk =
∑k

i=1 σi UiV>
i . and the denote ith row vector of Xk by x̃>

i .

I Axis: V1 (horizontal) and V2 (vertical)
I Interpretations of the Axis:

V1 = (v11, · · · , v1p)
> =

∑p
j=1 v1jej and V2 = (v21, · · · , v2p)

> =
∑p

j=1 v1jej ,
where ejs are the standard basis. Vj is explained by the covariates’s names of the
data and the associated coefficients (vj1, · · · , vjp).
(ex) Suppose that V1 = (0.7101,−0.7101, 0, · · · , 0), X1: GDP, X2 : interest rate,
then V1 is the weighted sum of GDP and interest rate with the weight
(0.7101,−0.7101).

I Poisiton of x̃>
i : (σ1Ui1, σ2Ui2).
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Principal Component Analysis



Concept of Dimensionality Reduction

I In many datasets, features are high-dimensional (e.g., image pixels, gene
expressions).

I However, not all features contribute equally to the variation in data.

I Dimensionality Reduction aims to:

- Eliminate redundant or noisy features
- Find a low-dimensional representation of the data
- Preserve the most informative aspects (variance or structure)

I Common motivations:
- Visualization of high-dimensional data (2D/3D)

- Faster computation and training
- Mitigation of the “curse of dimensionality”

Department of Statistical Data Science 17



Examples of Dimensionality Reduction

I Image Compression: Represent high-resolution images (e.g., 1024x1024) using
fewer principal components.

I Text Data (NLP): Reduce dimensionality of bag-of-words or TF-IDF vectors
using techniques like Latent Semantic Analysis (LSA).

I Gene Expression Data: Microarray data with thousands of genes → identify a
few latent variables (e.g., pathways).

I Sensor Networks: Combine redundant sensor readings into fewer representative
signals.
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Example: Gene Expression Data

I Genes are segments of DNA that code for proteins.
I Gene expression measures how actively a gene is being transcribed into RNA and

translated into proteins.
I High expression = the gene is actively producing proteins.

Low expression = little or no protein is being produced.

I Techniques: Microarray, RNA-seq provide expression levels as numeric values.
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Gene Expression Dataset Structure

I Let X ∈ Rn×p be the data matrix:
I n: number of samples (e.g., tissues or patients)
I p: number of genes (e.g., 20,000)
I (X)ij : expression level of gene j in sample i

I Each row x>
i : one sample

Each column Xj : one gene
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Centering the Data

I Remove gene-wise means (centering):

X̃ = X −ΠC(1n)X, where ΠC(1n) = 1n(1
>
n 1n)

−11>n

Note that ΠC(1n) is the projection matrix onto 1n ∈ Rn.

I Result: each gene has mean 0 across samples
I This step is essential for PCA
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Covariance Matrix

I Compute the gene-gene covariance matrix:

S =
1

n − 1
X̃>X̃ ∈ Rp×p

Note that (S)ij =
1

n−1

∑n
k=1(X̃>)ik(X̃)kj =

1
n−1

∑n
k=1(X̃)ki(X̃)kj Thus, (S)ij is the

sample covrariance of Xi and Xj .

I Each entry Sjk : covariance between gene j and gene k
I Large values indicate strong co-expression
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Principal Component Analysis (PCA)

By SVD X̃ = U>ΣV and S = 1
n−1 X̃>X̃ = V ( 1

n−1Σ
2)V>

I Eigen-decomposition gives the same result

S = VΛV>

I V: matrix of eigenvectors (principal directions)
I Λ: diagonal matrix of eigenvalues (variances explained), Λ = 1

n−1Σ
2

I Choose top k components (k = 2, 3) in {(λ)ii : i = 1, · · · , p} to reduce
dimensionality.

I Principle Component Directions: V1,V2, · · ·
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Projecting onto Principal Components

I Get sample representations in PC space: For the new coordinate with the largest
eigenvalue (σ2

1),
Z1 = X̃V1 ∈ Rn×1

Note that

X̃V1 = (

p∑
j=1

σjUjV>
j )V1 = Uj ∈ R

I PC score of the jth PC direction: X̃Vj a sample’ s coordinate in a new coordinate
Vj

I X̃[V1 V2] ∈ Rn×2 can be visualized to observe sample clustering or separation.
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Example: Cancer vs Normal Samples

I Dataset: 100 samples (50 cancer, 50 normal), 20,000 genes
I PCA reveals clusters in 2D:

I Cancer and normal samples may separate in the PC1-PC2 plane
I PC1 may capture majority of variance due to disease status

I PC score in V1 show genes contributing most to the variance
I See the Python Code! Click here!
I (HW) Image Compression?
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Summary

I Gene expression data is high-dimensional and complex
I PCA provides an effective way to reduce dimensionality and visualize patterns
I Helps identify key genes, detect outliers, and classify samples
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Matrix and Linear Map



Linear Map

Let A be m × n matrix and x be n matrix (n dimensional comlumn vector).
I Write an example of A and x and compute Ax . Where does the result lie on?

I Choose an other x ′ and compute Ax ′.

I Choose two constant a and b and compute A(ax) and A(bx ′) and A(ax)+A(bx ′).

I Compute A(ax + bx ′).
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Linear Map

I Write an example of A and x and compute Ax . Where does the result lie on?

A moves x ∈ Rn on Ax ∈ Rm.

I Choose an other x ′ and compute Ax ′.
A also moves x ′ ∈ Rn on Ax ′ ∈ Rm.

I Choose two constant a and b and compute A(ax) and A(bx ′) and A(ax)+A(bx ′).

I Compute A(ax + bx ′).

Note that A(ax) + A(bx ′) = A(ax + bx ′), which implies that A moves elements in Rn

to Rn with satisfying an special property.
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Definition: Linear map

Let V and W be vector spaces and let L be map from V to W .

I L(x + y) = L(x) + L(y) for all x , y ∈ V
I L(cx) = cL(x) for a scalar c.
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Matrix and linear map

Let V and W be vector spaces, and consider a linear map L from V to W. In particular,
let V = Rp and W = Rn, then L(0) = 0, and

L(ax + bx ′) = aL(x) + bL(x ′)

for all x , x ′ ∈ Rp and all a, b ∈ R.
Thus, n × p matrix can be regarded as a linear map. Moreover, we can consider one-
to-one correspondence between linear map and matrix.
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Matrix and linear map
I Matrix addition: let A and B be n × p matrix, and denote the corresponding

linear map by LA and LB. A + B is also n × p matrix and LA+B be the
correspondent linear map to A + B. Then, LA+B = LA + LB.

(A + B)x = Ax + Bx
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Matrix and linear map

I Matrix multiplication: let A and B be n × k and k × p matrix, and denote the
corresponding linear map by LA and LB. AB is n × p matrix and LAB be the
correspondent linear map to AB. Then, LAB = LA ◦ LB (Composition of
functions)

x 7→ Ax 7→ B(Ax)
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Matrix and linear map

Our conclusion is that

W ∈ Rn×p if and only if W : Rp 7→ Rn is linear.

I When n < p W is called a (linear) encoder.
I When n > p W is called a (linear) decoder.

Moreover, it is also valid argument that the decompision of a matrix is that of the
associated linear map. Next, we discuss a decomposition of squared matrix and will
argue that it is the decomposition of the linear map.
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Eigen-decomposition

Let A ∈ Rp×p be a symmetric matrix. Then there exists an orthogonal matrix E and a
diagonal matrix D (with real-valued elements) such that

A = EDE>

I Orthogonality of E : write

E = [e1, · · · , ep ]

then e>j ek = 0 for j 6= k and ‖ej‖ = 1 for all j.
I Projection onto C(ej) is given by ej(e>j ej)

−1e>j = eje>j
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Eigen-decomposition

Suppose that A be a symmetric matrix. Let λj be the jth diagonal element of D, then
we can write

A = EDE> =

p∑
j=1

λjeje>j

We can know that A is the sum of orthogonal projection operators. ejs are eigenvector
and λj is the associated eigenvalue. C(ej) is eigenspace spaned by ej .
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Eigen-decomposition

For simplicity let A be 2× 2 matrix.
I Let D1 = diag(λ1, 0) and D2 = diag(λ2, 0), then

D1E> = λ1

(
e>1
0

)
and D2E> = λ2

(
0

e>2

)
I We can easily show that

(
e1 e2

)( e>1
e>2

)
= e1e>1 + e>2 e2

Thus,

A = EDE> = E(D1E> + D2E>) = λ1e1e>1 + λ2e>2 e2
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Eigen-decomposition

This eigendecomposition can be viewed as the decomposition of a linear map:

LA =

p∑
j=1

λjLEj ,

where Ej = eje>j .

Note that
I projection onto C(ej) is given by ej(e>j ej)

−1e>j = eje>j
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Eigen-decomposition

Therefore,

LA(x) =
p∑

j=1

λjLEj (x),

where LEj (x) is projection onto the jth eigenspace.
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Approximation of Linear map

Let A(k) =
∑k

j=1 λjeje>j then A(k) approximates A?
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Approximation of Linear map

EDE>x = [e1, · · · , ep ]diag(λ1, · · · , λp)

 e>1
...

e>p

 x

= [e1, · · · , ep ]diag(λ1, · · · , λp)

 e>1 x
...

e>p x


= [e1, · · · , ep ]

 λ1e>1 x
...

λpe>p x


=

p∑
j=1

ej(λje>j x) = (

p∑
j=1

λjeje>j )x,
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Approximation of Linear map

Eigendecomposition shows the linear map of a symmetric matrix as the composition of
three operations:

Ax = EDE>x

x 7→ E>x (rotation) 7→ D(E>x) (scaling)

7→ E(DE>x) (reverse rotation)
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Inverse matrix of positive definite matrix

Let A be symmetric and nonnegative definite matrix. Then the minimum eigenvalue is
positive if and only if A is positive definite.
pf) Let λmin be the minumum eigenvalue of A. Assume that λmin > 0. Let x =∑

j=1 ajej 6= 0, then

x>Ax =

p∑
j=1

λj(e>j x)2 =
p∑

j=1

λja2j > 0.

Assume that A is pd matrix. WLOG, let λp be the minimum eigenvalue of A. Then,

e>p Aep =
∑
j=1

λj(e>j ep)
2 = λp > 0.
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Inverse matrix of positive definite matrix

The inverse matrix of such A is given by

A−1 = ED−1E>.

pf) ED−1E>A = ED−1 E>E︸︷︷︸
=I

DE> = I

and AED−1E> = ED E>E︸︷︷︸
=I

D−1E> = I. By definition of the inverse matrix, we obtain

the result.
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Summary

Suppose tha an asymmetic matrix A is decomposed by A = EΛE>. Then

LA =

p∑
j=1

LBj ,

where Bj = eje>j and ej is the jth column vector of E .

See the Python Code! (Click here.)
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Dimension Reduction and Optimal Reconstruction



Matrix Norms

Matrix norms measure the size or magnitude of a matrix. They play a crucial role in
numerical analysis and matrix computations.

Commonly used matrix norms include:
I Operator Norm (Induced Norm)

I Frobenius Norm
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Operator Norm

The operator norm (also called the induced norm) of a matrix A ∈ Rm×n is defined as:

‖A‖op = sup
x 6=0

‖Ax‖2
‖x‖2

= sup
‖x‖2=1

‖Ax‖2

I Measures how much A stretches a vector.
I Equivalent to the largest singular value (i.e. σ1 in SVD) of A.

I Sub-multiplicative: ‖AB‖op ≤ ‖A‖op‖B‖op
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Frobenius Norm
The Frobenius norm of a matrix A ∈ Rm×n is defined as:

‖A‖F =

 m∑
i=1

n∑
j=1

|(A)ij |2
1/2

Alternatively,

‖A‖F =
√

Tr(A>A) =

min(m,n)∑
i=1

σ2
i

1/2

I Equivalent to the Euclidean norm of the matrix as a vector.
I Easy to compute and differentiable.
I Unitary invariant: ‖UAV‖F = ‖A‖F for orthogonal matrices U, V.
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Linear Projection and Reconstruction

I Let each data point in high-dimensional space be denoted by xi ∈ Rp.

I Apply a linear transformation W ∈ Rp×k to obtain a low-dimensional
representation:

zi = W>xi ∈ Rk

I We can reconstruct an approximation of the original data using a reconstruction
matrix Wr ∈ Rp×k :

x̂i = Wrzi = WrW>xi

I If Wr = W, this gives:
x̂i = WW>xi
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Example: Projection and Reconstruction

I Let xi =

23
1

 ∈ R3

I Define projection matrix W =

1 0
0 1
0 0


I Project to 2D:

zi = W>xi =

[
2
3

]

I Reconstruct:

x̂i = Wzi =

1 0
0 1
0 0

[
2
3

]
=

23
0


I Note: x̂i 6= xi → Information loss
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Optimal Linear Transformation for Fixed Subspace
I Given:

I xi ∈ Rp for i = 1, · · · , n: original data. Assume that
∑n

i=1 xi = 0.
I W ∈ Rp×k : fixed orthonormal basis (i.e., W>W = Ik )

I Low-dimensional representation: (Encoder)
zi = f (xi) ∈ Rk

I Reconstruction from low-dimensional representation: (Decoder)
x̂i = Wzi ∈ Rp

I Optimal Reconstruction
This choice minimizes the squared reconstruction error:

min
f

n∑
i=1

‖xi − Wf (xi)‖2

If decoder is linear, then optimal encoder is always linear. Also, the optimal
encoder is completely determined by the given decoder.
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Optimal Linear Transformation for Fixed Subspace

Surprisingly, zi = W>xi for any W ∈ Rp×k
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How to Choose the Best Subspace?

I So far, we assumed a fixed subspace defined by W.

I Now we ask: How do we choose the optimal subspace W itself?

I Goal:
I Find W ∈ Rp×k (with orthonormal columns) that minimizes the total reconstruction

error:

min
W:W>W=Ik

1

n

n∑
i=1

‖xi − WW>xi‖2

I This is equivalent to:

I Finding the subspace that captures the maximum variance of the data.

I This leads to: Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

I Let the data be mean-centered: 1
n
∑n

i=1 xi = 0
I Define the sample covariance matrix:

S =
1

n

n∑
i=1

xix>
i ∈ Rp×p

I Let X ∈ Rn×p be the data matrix with row vectors x>
i .

I Note that S = X>X/n
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Reconstruction Error as Matrix Form (1/2)

I Since x̂>
j = x>

j WW>, the entire reconstruction can be written as:

X̂ = XWW>

I The total squared reconstruction error becomes:

n∑
i=1

∥∥∥xi − WW>xi

∥∥∥2 = n∑
i=1

p∑
j=1

(X − XWW>)2ij ,

where (A)ij denote the element of the ith row and jth column.

I This uses the Frobenius norm:

‖A‖2F =
∑
i,j

a2ij = Tr(A>A)
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Reconstruction Error as Matrix Form (2/2)

I Expand the squared Frobenius norm:∥∥∥X − XWW>
∥∥∥2

F
= Tr

[
(X − XWW>)>(X − XWW>)

]
I Algebraic simplification:

= Tr
(

X>X − X>XWW> − WW>X>X + WW>X>XWW>
)

I Use symmetry (X>X is symmetric) and orthonormality (W>W = I):

= Tr
(

X>X − W>X>XW
)

I Therefore:

min
W>W=Ik

∥∥∥X − XWW>
∥∥∥2

F
⇐⇒ max

W>W=Ik
Tr

(
W>X>XW

)
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PCA via Eigen Decomposition
I Define the sample covariance matrix:

S =
1

nX>X ∈ Rp×p

I Then the PCA objective becomes the problem finding W,

max
W>W=Ik

Tr
(

W>SW
)

I Solution:

I Let S = VΛV> be the eigen-decomposition of S
I Λ = diag(λ1, λ2, . . . , λp), with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0
I V = [V1,V2, . . . ,Vp ] are the eigenvectors

I Optimal choice of W ∈ Rp×k :

W = [V1, . . . ,Vk ] (top-k eigenvectors of S)
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PCA Solution via Eigen Decomposition (Rank-1 Case)
I PCA objective (rank-1 case):

max
‖w‖2=1

w>Sw

where w ∈ Rp and S ∈ Rp×p is symmetric and positive semi-definite.
I Let S = VΛV> be the eigen-decomposition of S:

Λ = diag(λ1, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

V = [v1, . . . , vp ] is orthonormal
I By substituting w = Va, the problem becomes:

max
‖a‖2=1

a>Λa =

p∑
i=1

λia2i

I The maximum is achieved when a = [1, 0, . . . , 0]> ⇒ w = V1

I Therefore, the optimal direction is the first eigenvector:
w∗ = V1
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PCA Solution via Eigen Decomposition (1/2)

I Recall the PCA objective:
max

W>W=Ik
Tr(W>SW)

where S ∈ Rp×p is symmetric and positive semi-definite.
I Let S = VΛV> be the eigen-decomposition of S:

Λ = diag(λ1, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

V = [V1, . . . ,Vp ] is orthonormal
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PCA Solution via Eigen Decomposition (1/2)

I Define U := V>W ∈ Rp×k , then U>U = Ik
I Then:

Tr(W>SW) = Tr(U>ΛU)

I Tr(UU>) = Tr(U>U) = Tr(Ik) = k
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PCA Solution via Eigen Decomposition (2/2)

I Recall:

Tr(U>ΛU) =

p∑
i=1

λi

k∑
j=1

u2
ij with

p∑
i=1

u2
ij = 1,

p∑
i=1

k∑
j=1

u2
ij = k

I From the constraints,
∑k

j=1 u2
ij ≤ 1 for i = 1, · · · , p (See the Appendix).

I Thus, to maximize the weighted sum
∑p

i=1 λi ·
(∑k

j=1 u2
ij

)
, we must assign

weights to the largest λi ’s.
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PCA Solution via Eigen Decomposition (2/2)

I Maximum trace is achieved when:

W = [V1, . . . ,Vk ] (top-k eigenvectors of S)

Tr(W>SW) =

k∑
i=1

λi

I This shows that PCA selects the directions of maximum variance.
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PCA Solution via Eigen Decomposition (2/2)

Our conclusion
I Goal:

I Find W ∈ Rp×k (with orthonormal columns) that minimizes the total reconstruction
error:

min
W:W>W=Ik

1

n

n∑
i=1

‖xi − WW>xi‖2

I This is equivalent to:

I Finding the subspace that captures the maximum variance of the data.

W = [V1, . . . ,Vk ] (top-k eigenvectors of S)
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Appendix



Row–norm bound for orthonormal‐column matrix

Claim
Let U ∈ Rp×k satisfy U>U = Ik . For each row vector u>

i (=(ui1, . . . , uik)),

‖ui‖22 =
k∑

j=1

u2
ij ≤ 1 (i = 1, . . . , p).

Auxiliary facts

I Column orthonormality implies
p∑

i=1

u2
ij = 1 for every j.

I Hence the total squared sum is
p∑

i=1

k∑
j=1

u2
ij = k.
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Proof of the row–norm bound I

1. Orthogonal projector. Define P := UU> ∈ Rp×p. Because U>U = Ik ,

P> = P, P2 = P.

Thus P is a symmetric projector whose eigenvalues are 1 (multiplicity k) and 0
(multiplicity p − k). Consequently ‖P‖2 = 1.

2. Diagonal entries of P. For the ith standard basis vector ei ,

Pii = e>i Pei = e>i UU>ei = ‖U>ei‖2 =
k∑

j=1

u2
ij .
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Proof of the row–norm bound II
3. Eigenvalue of P. Since P2 = P, P2v = Pv = λv . for all v . Let v be an

eigenvector of P then P2v = PPv = P(λv) = λ(Pv) = λ2v . Therefore

λ2v = λv =⇒ (λ2 − λ)v = 0.

Because v 6= 0, we must have

λ2 − λ = 0 =⇒ λ ∈ {0, 1}.

4. Spectral bound. For any unit vector v, v>Pv ≤ ‖P‖2‖v‖22 = 1. Taking v = ei
gives Pii ≤ 1.

5. Conclusion. Combining steps 2 and 3,

k∑
j=1

u2
ij = Pii ≤ 1 (i = 1, . . . , p).
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