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Introduction



Motivation: Understanding Latent Structure

▶ Many psychological, social, or marketing measurements are inherently latent.

▶ Factor analysis identifies underlying variables (factors) that explain the pattern of
correlations within a set of observed variables.

▶ We consider a consumer survey assessing satisfaction with a product.
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Example: Product Satisfaction Survey

Observed variables X1 to X8:

1. X1: The price of the product is reasonable.

2. X2: The quality of the product is excellent.

3. X3: The product meets my expectations.

4. X4: Customer service is satisfactory.

5. X5: Delivery is prompt.

6. X6: The return process is easy.

7. X7: The brand image is positive.

8. X8: The product is easy to use.
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Goal of Factor Analysis

▶ Identify latent factors (e.g., “Product Quality”, “Service Experience”, “Brand
Perception”) that account for the correlations among these items.

▶ Each observed variable is modeled as a linear combination of common factors plus
a unique factor.

▶ Useful for dimension reduction and interpretation of survey constructs.
▶ X2,X3,X7: Related to Product Quality Factors
▶ X4,X5,X6: Related to Service Factors
▶ X1,X7: Related to Price and Brand
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Inter-item Score Correlations

Figure: Visualization of the Factor model
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Factor Models



Inter-item Score Correlations

▶ Score Standardization: xi − x̄
▶ For convenience, we denote xi − x̄ as xi , assuming the mean of the scores is 0.

▶ Let xi be an 8-dimensional multivariate variable, with components xik for
k = 1, . . . , 8 and i = 1, ·, n.

▶ X ∈ Rn×p: (observed) data matrix where the row i of X is x⊤i .

▶ F ∈ Rn×k : (latent) factor matrix where the row i of X is f⊤i = (fi1, fi2, fi3)

▶ Λ ∈ Rp×k : loading matrix where (Λ)ij denotes a weight from the factor j to the
observed variable i . In Figure the weight denotes the direct link from the factor
toe the variable (common across the individuals)
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Factor Model Representation

X = FΛ⊤ + ϵ

▶ X ∈ Rn×p: p-dimensional vector of observed variables (p = 8 here)

▶ F ∈ Rn×k : k-dimensional vector of latent factors (k < p)

▶ Λ ∈ Rp×k : p × k factor loading matrix

▶ ϵ ∈ Rn×p: error matrix (ϵ⊤i denotes the row i of ϵ. )
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Factor Model: Covariance-Based Derivation

Factor model:
xi = Λfi + ϵi

▶ xi ∈ Rp: observed variables

▶ fi ∈ Rk : common factors

▶ ϵi ∈ Rp: unique factors
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Factor Model: Covariance-Based Derivation

Assumptions:

▶ E[fi ] = 0, E[ϵi ] = 0

▶ E[fi f⊤i ] = Ik (factors are standardized)

▶ E[ϵiϵ⊤i ] = Ψ (diagonal matrix)

▶ E[fiϵ⊤i ] = 0 (independence)

Covariance structure:

Σ = E[xix⊤i ] = ΛE[fi f⊤i ]Λ⊤ + E[ϵiϵ⊤i ] = ΛΛ⊤ +Ψ

▶ Σ ∈ Rp×p: covariance matrix of observed variables
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Estimation of Factor Models: Factor Loadings



Estimation of Factor Loadings Λ

Goal: Given the sample covariance matrix S ≈ Σ, estimate

Σ = ΛΛ⊤ +Ψ

Approaches:
▶ Principal Factor Method (PFA):

▶ Replace Ψ with initial estimates (e.g., communality), then perform eigen
decomposition on S−Ψ

▶ Retain top k eigenvalues/vectors to estimate Λ

▶ Maximum Likelihood Estimation (MLE):
▶ Assume multivariate normality: xi ∼ Np(0,Σ)
▶ Maximize log-likelihood:

ℓ(Λ,Ψ) = −n

2

(
log |Σ|+ tr(Σ−1S)

)
▶ Numerical optimization is required
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Principal Factor Analysis (PFA)

Step-by-step estimation:

1. Compute the sample covariance matrix S (estimate of Σ)

2. Estimate initial uniqueness: Ψ0 = diag(ψ1, . . . , ψp) (e.g., ψj = sjj − h2j )

3. Define common variance matrix: Sc = S−Ψ0 (estimate of ΛΛ⊤)

4. Eigen-decomposition: Sc = VDV⊤

5. Retain top k components:

Λ = VkD
1/2
k

Note: Iterate if desired to update Ψ using residuals.

Department of Statistical Data Science 15



MLE Optimization for Factor Analysis (1/2)

Challenge: No closed-form solution for

ℓ(Λ,Ψ) = −n

2

(
log |Σ|+ tr(Σ−1S)

)
Approaches:
▶ EM Algorithm

▶ Treat latent factors fi as missing data
▶ Iteratively update expected sufficient statistics (E-step) and parameter estimates

(M-step)
▶ Guarantees non-decreasing likelihood

▶ Direct Numerical Optimization
▶ Maximize the likelihood directly over Λ and Ψ
▶ Use algorithms such as Newton-Raphson, Fisher scoring, or BFGS
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Gradient of the Log-Likelihood (w.r.t. Λ)

Log-likelihood function:

ℓ(Λ,Ψ) = −n

2

(
log |Σ|+ tr

(
Σ−1S

))
with Σ = ΛΛ⊤ +Ψ

Gradient with respect to Λ:

∂ℓ

∂Λ
= −n

2

(
∂

∂Λ
log |Σ|+ ∂

∂Λ
tr(Σ−1S)

)
Using matrix calculus:

∂ℓ

∂Λ
= −n

(
Σ−1SΣ−1 −Σ−1

)
Λ
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Factor Rotation: Motivation

▶ Factor loadings Λ are not unique.

▶ Any rotation T of Λ preserves the model:

Λ∗ = ΛT, with T⊤T = I

▶ Goal: Simplify interpretation by achieving a structure where each variable loads
highly on only one factor.

Example:

▶ Without rotation: mixed loadings across all factors

▶ With rotation: clearer factor-variable associations
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Types of Rotation

Orthogonal Rotation (e.g., Varimax):

▶ Λ∗ = ΛT

▶ T⊤T = I

▶ Factors remain uncorrelated

Oblique Rotation (e.g., Promax, Oblimin):

▶ T⊤T ̸= I

▶ Factor correlation matrix: Φ = T⊤T

▶ Allows for correlated latent factors
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Identifiability under Λ⊤Λ = D

Factor model:
X = Λf + e

Assumptions:

▶ Cov(f) = Ik , Cov(e) = σ2Ip
▶ Cov(f, e) = 0

▶ Λ⊤Λ = D, diagonal

Implication:

▶ This constraint eliminates orthogonal indeterminacy

▶ Λ is identifiable up to sign changes
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Estimation of Factor Models: Factor Scores



Definition of Factor Scores

Factor score: An estimate of the latent factor fi for each observation xi , based on the
model:

xi = Λfi + ϵi

▶ Λ ∈ Rp×k : factor loading matrix

▶ fi ∼ N (0, Ik): latent factors

▶ ϵi ∼ N (0,Ψ): unique factors (diagonal covariance)

Goal: Estimate f̂i ≈ E[fi | xi ]
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Derivation: Conditional Expectation

Joint distribution of xi and fi :[
xi
fi

]
∼ N

([
0
0

]
,

[
Σ Λ
Λ⊤ Ik

])
, where Σ = ΛΛ⊤ +Ψ

From properties of multivariate normal distributions:

E[fi | xi ] = Λ⊤Σ−1xi
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Computation Methods for Factor Scores

1. Regression method (Thomson, 1939):

f̂i = Λ⊤Σ−1xi

2. Bartlett’s method (Bartlett, 1937):

f̂i =
(
Λ⊤Ψ−1Λ

)−1
Λ⊤Ψ−1xi

▶ Bartlett’s estimator minimizes the residual unique variance.

▶ Regression scores may be correlated across factors, while Bartlett scores are
uncorrelated but scale-dependent.
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Visualizing Factor Scores

Explore the distribution of observations in the latent factor space.

▶ Each observation i has an estimated factor score vector:

f̂i = (f̂i1, f̂i2, . . . , f̂ik)

▶ Plot f̂i1 vs. f̂i2 to visualize patterns:
▶ Group separation
▶ Outlier detection
▶ Interpretation of latent dimensions

Common plots:

▶ 2D scatter plot of f̂i1 and f̂i2
▶ Color by categorical groups or cluster labels

▶ Add text labels or convex hulls for clusters
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