

1

Visualization CH09: Factor Analysis

Jong-June Jeon

University of Seoul, Department of Statistics

- Introduction

- Factor Models

- Estimation of Factor Models: Factor Loadings

- Estimation of Factor Models: Factor Scores

Introduction

Motivation: Understanding Latent Structure

- Many psychological, social, or marketing measurements are inherently latent.
- Factor analysis identifies underlying variables (factors) that explain the pattern of correlations within a set of observed variables.
- ▶ We consider a consumer survey assessing satisfaction with a product.

Example: Product Satisfaction Survey

Observed variables X_1 to X_8 :

- 1. X_1 : The price of the product is reasonable.
- 2. X_2 : The quality of the product is excellent.
- 3. X_3 : The product meets my expectations.
- 4. X₄: Customer service is satisfactory.
- 5. X_5 : Delivery is prompt.
- 6. X_6 : The return process is easy.
- 7. X_7 : The brand image is positive.
- 8. X_8 : The product is easy to use.

Goal of Factor Analysis

- Identify latent factors (e.g., "Product Quality", "Service Experience", "Brand Perception") that account for the correlations among these items.
- Each observed variable is modeled as a linear combination of common factors plus a unique factor.
- Useful for dimension reduction and interpretation of survey constructs.
 - X_2, X_3, X_7 : Related to **Product Quality Factors**
 - X_4, X_5, X_6 : Related to **Service Factors**
 - X_1, X_7 : Related to **Price and Brand**

Inter-item Score Correlations

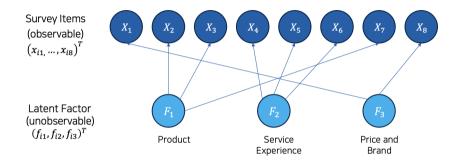


Figure: Visualization of the Factor model

Factor Models

Inter-item Score Correlations

Score Standardization: $x_i - \bar{x}$

For convenience, we denote $\mathbf{x}_i - \bar{\mathbf{x}}$ as \mathbf{x}_i , assuming the mean of the scores is 0.

Let x_i be an 8-dimensional multivariate variable, with components x_{ik} for k = 1,..., 8 and i = 1,., n.

- ▶ $\mathbf{X} \in \mathbb{R}^{n \times p}$: (observed) data matrix where the row *i* of \mathbf{X} is \mathbf{x}_i^{\top} .
- ▶ $\mathbf{F} \in \mathbb{R}^{n \times k}$: (latent) factor matrix where the row *i* of **X** is $\mathbf{f}_i^{\top} = (f_{i1}, f_{i2}, f_{i3})$
- ∧ ∈ ℝ^{p×k}: loading matrix where (∧)_{ij} denotes a weight from the factor j to the observed variable i. In Figure the weight denotes the direct link from the factor toe the variable (common across the individuals)

Factor Model Representation

$$\mathbf{X} = \mathbf{F} \mathbf{\Lambda}^{ op} + \boldsymbol{\epsilon}$$

- ▶ $X \in \mathbb{R}^{n \times p}$: *p*-dimensional vector of observed variables (*p* = 8 here)
- ▶ $\mathbf{F} \in \mathbb{R}^{n \times k}$: k-dimensional vector of latent factors (k < p)
- ▶ $\Lambda \in \mathbb{R}^{p \times k}$: $p \times k$ factor loading matrix
- $\epsilon \in \mathbb{R}^{n \times p}$: error matrix (ϵ_i^{\top} denotes the row *i* of ϵ .)

Factor Model: Covariance-Based Derivation

Factor model:

$$\mathbf{x}_i = \mathbf{\Lambda} \mathbf{f}_i + \epsilon_i$$

- ▶ $\mathbf{x}_i \in \mathbb{R}^p$: observed variables
- ▶ $\mathbf{f}_i \in \mathbb{R}^k$: common factors
- ▶ $\epsilon_i \in \mathbb{R}^p$: unique factors

Factor Model: Covariance-Based Derivation

Assumptions:

- $\blacktriangleright \mathbb{E}[\mathbf{f}_i] = \mathbf{0}, \quad \mathbb{E}[\boldsymbol{\epsilon}_i] = \mathbf{0}$
- $\blacktriangleright \mathbb{E}[\mathbf{f}_i \mathbf{f}_i^{\top}] = \mathbf{I}_k \text{ (factors are standardized)}$
- $\blacktriangleright \mathbb{E}[\epsilon_i \epsilon_i^\top] = \Psi \text{ (diagonal matrix)}$
- $\mathbb{E}[\mathbf{f}_i \boldsymbol{\epsilon}_i^\top] = \mathbf{0}$ (independence)

Covariance structure:

$$\boldsymbol{\Sigma} = \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\top] = \boldsymbol{\Lambda} \mathbb{E}[\mathbf{f}_i \mathbf{f}_i^\top] \boldsymbol{\Lambda}^\top + \mathbb{E}[\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i^\top] = \boldsymbol{\Lambda} \boldsymbol{\Lambda}^\top + \boldsymbol{\Psi}$$

▶
$$\Sigma \in \mathbb{R}^{p \times p}$$
: covariance matrix of observed variables

Estimation of Factor Models: Factor Loadings

Estimation of Factor Loadings Λ

Goal: Given the sample covariance matrix $\boldsymbol{S} \approx \boldsymbol{\Sigma},$ estimate

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda}\boldsymbol{\Lambda}^\top + \boldsymbol{\Psi}$$

Approaches:

Principal Factor Method (PFA):

- ▶ Replace Ψ with initial estimates (e.g., communality), then perform eigen decomposition on $\mathbf{S} \Psi$
- Retain top k eigenvalues/vectors to estimate Λ
- Maximum Likelihood Estimation (MLE):
 - Assume multivariate normality: $\mathbf{x}_i \sim \mathcal{N}_{\rho}(\mathbf{0}, \mathbf{\Sigma})$
 - Maximize log-likelihood:

$$\ell(\mathbf{\Lambda}, \mathbf{\Psi}) = -rac{n}{2} \left(\log |\mathbf{\Sigma}| + \operatorname{tr}(\mathbf{\Sigma}^{-1} \mathbf{S})
ight)$$

Numerical optimization is required

Principal Factor Analysis (PFA)

Step-by-step estimation:

- 1. Compute the sample covariance matrix **S** (estimate of $\boldsymbol{\Sigma}$)
- 2. Estimate initial uniqueness: $\Psi_0 = \text{diag}(\psi_1, \dots, \psi_p)$ (e.g., $\psi_j = s_{jj} h_j^2$)
- 3. Define common variance matrix: $\mathbf{S}_c = \mathbf{S} \mathbf{\Psi}_0$ (estimate of $\mathbf{\Lambda}\mathbf{\Lambda}^{\top}$)
- 4. Eigen-decomposition: $\mathbf{S}_c = \mathbf{V} \mathbf{D} \mathbf{V}^{\top}$
- 5. Retain top k components:

$$\mathbf{\Lambda} = \mathbf{V}_k \mathbf{D}_k^{1/2}$$

Note: Iterate if desired to update Ψ using residuals.

MLE Optimization for Factor Analysis (1/2)

Challenge: No closed-form solution for

$$\ell(\mathbf{\Lambda}, \mathbf{\Psi}) = -rac{n}{2} \left(\log |\mathbf{\Sigma}| + \operatorname{tr}(\mathbf{\Sigma}^{-1} \mathbf{S})
ight)$$

Approaches:

- EM Algorithm
 - Treat latent factors f_i as missing data
 - Iteratively update expected sufficient statistics (E-step) and parameter estimates (M-step)
 - Guarantees non-decreasing likelihood

Direct Numerical Optimization

- Maximize the likelihood directly over A and Ψ
- Use algorithms such as Newton-Raphson, Fisher scoring, or BFGS

Gradient of the Log-Likelihood (w.r.t. Λ)

Log-likelihood function:

$$\ell(\mathbf{\Lambda}, \mathbf{\Psi}) = -\frac{n}{2} \left(\log |\mathbf{\Sigma}| + \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{S} \right) \right) \quad \text{with } \mathbf{\Sigma} = \mathbf{\Lambda} \mathbf{\Lambda}^{\top} + \mathbf{\Psi}$$

Gradient with respect to Λ :

$$\frac{\partial \ell}{\partial \pmb{\Lambda}} = -\frac{n}{2} \left(\frac{\partial}{\partial \pmb{\Lambda}} \log |\pmb{\Sigma}| + \frac{\partial}{\partial \pmb{\Lambda}} \operatorname{tr}(\pmb{\Sigma}^{-1} \pmb{\mathsf{S}}) \right)$$

Using matrix calculus:

$$rac{\partial \ell}{\partial \mathbf{\Lambda}} = -n \left(\mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{\Sigma}^{-1} - \mathbf{\Sigma}^{-1}
ight) \mathbf{\Lambda}$$

Factor Rotation: Motivation

Factor loadings Λ are not unique.

Any rotation T of Λ preserves the model:

$$\mathbf{\Lambda}^* = \mathbf{\Lambda}\mathbf{T}, \quad \text{with } \mathbf{T}^{\top}\mathbf{T} = \mathbf{I}$$

 Goal: Simplify interpretation by achieving a structure where each variable loads highly on only one factor.

Example:

- Without rotation: mixed loadings across all factors
- ▶ With rotation: clearer factor-variable associations

Types of Rotation

Orthogonal Rotation (e.g., Varimax):

- $\blacktriangleright \ \mathbf{\Lambda}^* = \mathbf{\Lambda}\mathbf{T}$
- $\blacktriangleright \mathbf{T}^{\top}\mathbf{T} = \mathbf{I}$
- Factors remain uncorrelated

Oblique Rotation (e.g., Promax, Oblimin):

- $\blacktriangleright \mathbf{T}^{\top}\mathbf{T} \neq \mathbf{I}$
- Factor correlation matrix: $\mathbf{\Phi} = \mathbf{T}^{\top}\mathbf{T}$
- Allows for correlated latent factors

Identifiability under $\mathbf{\Lambda}^{\top}\mathbf{\Lambda} = \mathbf{D}$

Factor model:

$$X=\Lambda f+e$$

Assumptions:

- ► $\operatorname{Cov}(\mathbf{f}) = \mathbf{I}_k$, $\operatorname{Cov}(\mathbf{e}) = \sigma^2 \mathbf{I}_p$
- ► Cov(f, e) = 0
- ► $\mathbf{\Lambda}^{\top}\mathbf{\Lambda} = \mathbf{D}$, diagonal

Implication:

- This constraint eliminates orthogonal indeterminacy
- Λ is identifiable up to sign changes

Estimation of Factor Models: Factor Scores

Definition of Factor Scores

Factor score: An estimate of the latent factor \mathbf{f}_i for each observation \mathbf{x}_i , based on the model:

$$\mathbf{x}_i = \mathbf{\Lambda} \mathbf{f}_i + \boldsymbol{\epsilon}_i$$

- $\Lambda \in \mathbb{R}^{p \times k}$: factor loading matrix
- $\mathbf{f}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_k)$: latent factors
- $\bullet \ \epsilon_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Psi}): \text{ unique factors (diagonal covariance)}$

Goal: Estimate $\hat{\mathbf{f}}_i \approx \mathbb{E}[\mathbf{f}_i \mid \mathbf{x}_i]$

Derivation: Conditional Expectation

Joint distribution of \mathbf{x}_i and \mathbf{f}_i :

$$\begin{bmatrix} \mathbf{x}_i \\ \mathbf{f}_i \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma} & \mathbf{\Lambda} \\ \mathbf{\Lambda}^\top & \mathbf{I}_k \end{bmatrix} \right), \quad \text{where } \mathbf{\Sigma} = \mathbf{\Lambda} \mathbf{\Lambda}^\top + \mathbf{\Psi}$$

From properties of multivariate normal distributions:

$$\mathbb{E}[\mathbf{f}_i \mid \mathbf{x}_i] = \mathbf{\Lambda}^\top \mathbf{\Sigma}^{-1} \mathbf{x}_i$$

Computation Methods for Factor Scores

1. Regression method (Thomson, 1939):

$$\hat{\mathbf{f}}_i = \mathbf{\Lambda}^\top \mathbf{\Sigma}^{-1} \mathbf{x}_i$$

2. Bartlett's method (Bartlett, 1937):

$$\hat{\mathbf{f}}_i = \left(\mathbf{\Lambda}^ op \mathbf{\Psi}^{-1} \mathbf{\Lambda}
ight)^{-1} \mathbf{\Lambda}^ op \mathbf{\Psi}^{-1} \mathbf{x}_i$$

- > Bartlett's estimator minimizes the residual unique variance.
- Regression scores may be correlated across factors, while Bartlett scores are uncorrelated but scale-dependent.

Visualizing Factor Scores

Explore the distribution of observations in the latent factor space.

Each observation *i* has an estimated factor score vector:

$$\hat{\mathbf{f}}_i = (\hat{f}_{i1}, \hat{f}_{i2}, \dots, \hat{f}_{ik})$$

▶ Plot \hat{f}_{i1} vs. \hat{f}_{i2} to visualize patterns:

- Group separation
- Outlier detection
- Interpretation of latent dimensions

Common plots:

- ▶ 2D scatter plot of \hat{f}_{i1} and \hat{f}_{i2}
- Color by categorical groups or cluster labels
- Add text labels or convex hulls for clusters