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Introduction



Motivation: Understanding Latent Structure

» Many psychological, social, or marketing measurements are inherently latent.

» Factor analysis identifies underlying variables (factors) that explain the pattern of
correlations within a set of observed variables.

> We consider a consumer survey assessing satisfaction with a product.
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Example: Product Satisfaction Survey

Observed variables X; to Xjg:

1.

©No R W

Xi:
Xo:
Xs:
Xy
Xs:
Xe:
X7
Xg:

The price of the product is reasonable.
The quality of the product is excellent.
The product meets my expectations.
Customer service is satisfactory.
Delivery is prompt.

The return process is easy.

The brand image is positive.

The product is easy to use.
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Goal of Factor Analysis

» Identify latent factors (e.g., “Product Quality”, “Service Experience”, “Brand
Perception”) that account for the correlations among these items.

» Each observed variable is modeled as a linear combination of common factors plus
a unique factor.
» Useful for dimension reduction and interpretation of survey constructs.

> X5, X3, X7: Related to Product Quality Factors
» X4, X5, Xs: Related to Service Factors
> Xi, X7: Related to Price and Brand
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Inter-item Score Correlations

Survey ltems
(observable)
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(v fiz fia) Product Service Price and
Experience Brand

Figure: Visualization of the Factor model
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Factor Models



Inter-item Score Correlations

» Score Standardization: x; — x
» For convenience, we denote x; — X as X;, assuming the mean of the scores is 0.

> Let x; be an 8-dimensional multivariate variable, with components x;, for
k=1,....,8and i=1,- n

> X € R™P: (observed) data matrix where the row i of X is x .

F € R™X: (latent) factor matrix where the row i of X is f,-T = (fi1, fi2, fi3)

> A € RP*K: |oading matrix where (A); denotes a weight from the factor j to the
observed variable i. In Figure the weight denotes the direct link from the factor
toe the variable (common across the individuals)

v
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Factor Model Representation

X=FA" +¢

» X € R"™P: p-dimensional vector of observed variables (p = 8 here)
» F € R™k: k-dimensional vector of latent factors (k < p)
» A c RP*K: p x k factor loading matrix

> € € R™P: error matrix (¢; denotes the row i of €. )
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Factor Model: Covariance-Based Derivation

Factor model:

x; = Nf; + ¢;

> x; € RP: observed variables
» f; ¢ Rk: common factors

> ¢; € RP: unique factors
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Factor Model: Covariance-Based Derivation

Assumptions:
> E[f] =0, E[e]=0
> E[f;f."] = I, (factors are standardized)
> Eleie; ] = W (diagonal matrix)
> E[fie] ] = 0 (independence)

Covariance structure:

T =E[xx]] = AE[f;if AT + Eleje] ] = AT + W

» > c RP*P: covariance matrix of observed variables
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Estimation of Factor Models: Factor Loadings



Estimation of Factor Loadings A

Goal: Given the sample covariance matrix S = X, estimate
T=A"+V

Approaches:
» Principal Factor Method (PFA):

> Replace W with initial estimates (e.g., communality), then perform eigen
decomposition on S — W
> Retain top k eigenvalues/vectors to estimate A

» Maximum Likelihood Estimation (MLE):

> Assume multivariate normality: x; ~ N,(0, X)
» Maximize log-likelihood:

YN, W) = —g (log |Z| + tr(Z~1S))

» Numerical optimization is required
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Principal Factor Analysis (PFA)

Step-by-step estimation:

1. Compute the sample covariance matrix S (estimate of X)
Estimate initial uniqueness: Wq = diag(¢1,...,%p) (e.g., ¥j =sj — hj2)
Define common variance matrix: S = S — Wy (estimate of AAT)

Eigen-decomposition: S = VDV "

AR N

Retain top k components:
A =V,D}?

Note: lterate if desired to update W using residuals.

Department of Statistical Data Science



MLE Optimization for Factor Analysis (1/2)

Challenge: No closed-form solution for
YN, W) = —g (log |Z| + tr(Z'S))

Approaches:
> EM Algorithm

» Treat latent factors f; as missing data
> lteratively update expected sufficient statistics (E-step) and parameter estimates
(M-step)
» Guarantees non-decreasing likelihood
» Direct Numerical Optimization

» Maximize the likelihood directly over A and W
» Use algorithms such as Newton-Raphson, Fisher scoring, or BFGS
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Gradient of the Log-Likelihood (w.r.t. A)

Log-likelihood function:

(N, W) = _g (log |Z| +tr (E71S)) with E=AAT + W

Gradient with respect to A:

o n(0 0 1
M- "2 (8A|og|Z]+ tr(X™ S))

Using matrix calculus:

%__ —lgy-1 -1
op = N (ETISTTI XA
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Factor Rotation: Motivation

» Factor loadings A are not unique.

» Any rotation T of A preserves the model:
A =AT, withT'T=1

» Goal: Simplify interpretation by achieving a structure where each variable loads
highly on only one factor.

Example:
> Without rotation: mixed loadings across all factors

» With rotation: clearer factor-variable associations
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Types of Rotation

Orthogonal Rotation (e.g., Varimax):
> N =AT
>» T'T=1I
» Factors remain uncorrelated
Oblique Rotation (e.g., Promax, Oblimin):
> T'T#I
» Factor correlation matrix: ® =T'T

» Allows for correlated latent factors
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|dentifiability under ATA =D

Factor model:
X=~Af+e

Assumptions:

> Cov(f) = Iy, Cov(e) = o2,

» Cov(f,e)=0

» ATA =D, diagonal
Implication:

» This constraint eliminates orthogonal indeterminacy

» A is identifiable up to sign changes
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Estimation of Factor Models: Factor Scores



Definition of Factor Scores

Factor score: An estimate of the latent factor f; for each observation x;, based on the
model:
x; = Nfi +€;

» A c RP*K: factor loading matrix

> f; ~ N(0,lx): latent factors

> €; ~ N(0,W): unique factors (diagonal covariance)
Goal: Estimate f; ~ E[f; | x;]
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Derivation: Conditional Expectation

Joint distribution of x; and f;:

; 0] [= A
[’;JNNQO],[AT IkD’ where & = AR + W

From properties of multivariate normal distributions:

E[f, | X,'] = I\T}:’lx,-
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Computation Methods for Factor Scores

1. Regression method (Thomson, 1939):
fi=AN"Zx;
2. Bartlett’s method (Bartlett, 1937):
fr = (I\Tlll_ll\)ill\Tlll_lx,-

P Bartlett's estimator minimizes the residual unique variance.

> Regression scores may be correlated across factors, while Bartlett scores are
uncorrelated but scale-dependent.
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Visualizing Factor Scores

Explore the distribution of observations in the latent factor space.

» Each observation / has an estimated factor score vector:

» Plot f,-l VS. 1?,-2 to visualize patterns:

» Group separation
» Outlier detection
» Interpretation of latent dimensions

Common plots:
» 2D scatter plot of f1 and fip
» Color by categorical groups or cluster labels
> Add text labels or convex hulls for clusters
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