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Introduction



Motivational Example: Perceptual Distances

I Suppose we conduct a psychological experiment where participants are asked to
rate the similarity between pairs of objects, such as:
I Musical genres
I Flavors of soft drinks
I Animal species

I The result is a distance matrix D ∈ Rn×n, where Dij represents how dissimilar
object i is from object j.

I However, the objects themselves do not have explicit coordinates in Euclidean
space.

I Question: Can we find a low-dimensional representation that reflects these
perceptual distances?
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Motivational Example: Perceptual Distances

Figure: Illustration of MDS
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Motivating Example 1: Musical Genres

I Participants rate the similarity between pairs of musical genres (e.g., jazz, rock,
hip-hop, classical).

I These ratings produce a distance matrix D, without any explicit feature vectors
for the genres.

I Goal: Recover a low-dimensional spatial map reflecting perceived similarities.
I Classical MDS: Embeds genres in R2 or R3, preserving pairwise distances.
I Insight: Genres like rock and metal may appear close together, while classical and

hip-hop may be distant.
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Motivating Example 2: Flavors of Soft Drinks

I A sensory test asks consumers to compare flavors of soft drinks.
I The results form a dissimilarity matrix based on perceived taste differences.
I Challenge: Taste profiles are not easily quantifiable in feature space.
I Classical MDS: Provides a perceptual flavor map based on consumer similarity

judgments.
I Use Case: Market positioning of products; e.g., Sprite and 7-Up are mapped

close, while Coke and Dr. Pepper are further apart.

Department of Statistical Data Science 7



Motivating Example 3: Animal Species

I Participants are asked how similar different animal species are (e.g., dog, wolf,
penguin, elephant).

I This results in a subjective distance matrix with no predefined coordinates.
I Goal: Understand how humans perceive biological similarity.
I Classical MDS: Embeds species into a spatial layout that reflects perceptual

clustering.
I Example: Dog and wolf are nearby; penguin appears distant from terrestrial

mammals.
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Summary: What Problem Does MDS Solve?

Example Problem MDS Solution
Musical Genres No coordinates, only

pairwise similarity
Find spatial layout of genres

Soft Drink Flavors Sensory data without nu-
meric features

Visualize perceptual flavor
space

Animal Species Subjective similarity only Map perceived biological prox-
imity

I In all cases: Distances are known, but coordinates are not.
I Classical MDS reconstructs coordinates that best preserve the distance structure.
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Classical MDS



Problem Setting

I Let xi = (xi1, · · · , xid)
> ∈ Rd be the observed data point for object i.

I The data matrix is X ∈ Rn×d , where each row represents an object.
I The pairwise Euclidean distance matrix D ∈ Rn×n is defined as:

(D)ij = ‖xi − xj‖2 = (xi − xj)
>(xi − xj)

I Goal: Find a low-dimensional representation zi ∈ Rk with k � d such that
distances are preserved:

‖zi − zj‖2 ≈ ‖xi − xj‖2
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Distance and Inner Product

I Let xi ∈ Rd and xj ∈ Rd . The Euclidean distance between them is:

dij =
√
(xi − xj)>(xi − xj)

I The squared distance can be written as:

d2
ij = ‖xi‖2 + ‖xj‖2 − 2x>

i xj

I
∑n

j=1 d2
ij and

∑n
i=1 d2

ij are quantities representing scaling factors of the distance
matrix.

I x>
i xj for i and j are corresponds to structural factor of the distance matrix.
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Distance and Inner Product

Goal: Find a low-dimensional representation zi ∈ Rk with k � d such that distances
are preserved:

‖zi − zj‖2 ≈ ‖xi − xj‖2

in the sense of preserving the structural properties of the distance matrix.

z>i zj ≈ x>
i xj

on average. This is the motivation of introducing the doubly centered distance matrix.
Next we’ll see how the scaling factor is excluded in the distance approximation procedure.
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Matrix Form of Squared Distances

I Let D ∈ Rn×n be the matrix where (D)ij = d2
ij .

I Then, D can be expressed as:

D = M1 + M2 − 2XX>

where:

(M1)ij = ‖xi‖2 for all j (row-wise constant)
(M2)ij = ‖xj‖2 for all i (column-wise constant)

I The term (XX>)ij = x>
i xj is the inner product of data vectors xi and xj .

I For notational convenience, we may denote d2
ij simply as dij in the following

discussion.
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Projection Matrix for Centering

I Define the projection matrix onto the space spanned by the constant vector 1:

ΠC(1) = 1(1>1)−11> =
1

n11>

I The centering matrix is:
H = I −ΠC(1)

which projects vectors onto the orthogonal complement of span(1).
For convenience, denote ΠC(1) by Π1.
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Double-Centering a Distance Matrix D
Assume D is a symmetric matrix of squared Euclidean distances.

1. D(I −Π1): subtracts the column means of D
dij → dij − d̄·j

2. Since D is symmetric, we have:
(I −Π1)D = D(I −Π1)

3. Applying centering from both sides:
(I −Π1)D(I −Π1)

This removes both row and column means from D, resulting in:
dij − d̄i· − d̄·j + d̄··

where:
I d̄i·: row mean
I d̄·j : column mean
I d̄··: grand mean
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Double-Centering Formula

The double-centered distance matrix is:

(D′)ij = dij − d̄i· − d̄·j + d̄··

This transformation is equivalent to:

D′ = (I −Π1)D(I −Π1)
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Double-Centering: Matrix Decomposition
The relationship between D′ and XX>: Recall that D is a squared Euclidean distance
matrix,

D = M1 + M2 − 2XX>

Apply double-centering:

D′ = (I −Π1)D(I −Π1) = (I −Π1)(M1 + M2 − 2XX>)(I −Π1)

Consider the following simplifications:
1. M1(I −Π1) = M1 − M1Π1 = 0 (M1 is row-wise constant)
2. (I −Π1)M2 = M2 −Π1M2 = 0 (M2 is column-wise constant)
3. (I −Π1)XX>(I −Π1) = (I −Π1)X((I −Π1)X)> = XX> uf X is column-wisely

centered.
(Note that distance matrix is invariant to the locational-shift. Thus, we can
assume the centered X without loss of generality.)
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Centered Inner Product

I From the previous steps:

D′ = (I −Π1)D(I −Π1) = −2XX>

I Thus, the double-centered distance matrix yields the (scaled) Gram matrix:

B := −1

2
(I −Π1)D(I −Π1) = XX>

I B is the inner product matrix of the centered data, and is the foundation of
classical MDS.

Note: In MDS, it is not necessary to observe X. Only the distance matrix D is required.
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Classical MDS: Double-Centering Perspective

I Let Z ∈ Rn×k be the low-dimensional latent configuration such that:

(I −Π1)Z = Z (i.e., Z is centered)

I Let D̃ be the distance matrix computed from Z:

(D̃)ij = ‖zi − zj‖2

I Then, applying double-centering to D̃, we obtain:

D̃′ = (I −Π1)D̃(I −Π1) = −2ZZ>
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Classical MDS: Optimization Formulation

Basic objective function of MDS

min
Z∈Rn×k

∥∥∥D′ − D̃′
∥∥∥2

F
,

where ‖·‖F is the Frobenius norm of a matrix. The objective function denotes a distance
betweeem the double centered distance matrices on the original space and the reduced
dimensional space.
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Interpretation of MDS obj ftn: Frobenius Norm of a Matrix

Let A ∈ Rn×m be a matrix.

Frobenius norm

‖A‖F =

√∑
i,j

(A)2ij =
√

tr(A>A) =

√√√√min(n,m)∑
i=1

σ2
i (A)

where σi(A) are the singular values of A (See the SVD).
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Interpretation of MDS obj ftn: Frobenius Norm Decomposition via
Projection

Let Π1 =
1
n11> and I −Π1 be the centering projection. Then:

‖(I −Π1)A +Π1A‖2F = tr
[
((I −Π1)A +Π1A)> ((I −Π1)A +Π1A)

]
= tr

[
((I −Π1)A)>(I −Π1)A + (Π1A)>(Π1A)

]
= ‖(I −Π1)A‖2F + ‖Π1A‖2F

I Interpretation: The Frobenius norm is preserved under orthogonal decomposition.
I Application: Useful for analyzing total variance in centered vs. mean components.
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Interpretation of MDS obj ftn: Difference Between Distance Matrices

I Let D and D̃ be two squared distance matrices. Then:

‖D − D̃‖2F = ‖(I −Π1)(D − D̃)‖2F + ‖Π1(D − D̃)‖2F

I The first term is the projection onto the orthogonal complement of 1, and is
directly related to the MDS objective:∥∥∥D′ − D̃′

∥∥∥2
F
= ‖(I −Π1)(D − D̃)‖2F = 4‖XX> − ZZ>‖2F
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Interpretation of MDS obj ftn: Scale Invariance of MDS

I The second term, corresponding to the mean of distances, is the scaling factor of
distance matrix:

‖Π1(D − D̃)‖2F =
∑

i
n
(
d̄2

i − d̄ ′ 2
i
)2

where:

d̄2
i =

1

n

n∑
j=1

‖xi − xj‖2, d̄ ′ 2
i =

1

n

n∑
j=1

‖zi − zj‖2

I These terms depend on the scale (magnitude) of the data but are not part of the
MDS objective.

I Therefore, MDS captures only the structural geometry (e.g., relative positions),
not absolute distances.

Department of Statistical Data Science 25



Interpretation of MDS obj ftn: Optimization Formulation

I Therefore, the classical MDS objective minZ∈Rn×k

∥∥∥D′ − D̃′
∥∥∥2

F
is to match the

centered inner product matrices:

min
Z∈Rn×k

∥∥∥(I −Π1)D(I −Π1)− (I −Π1)D̃(I −Π1)
∥∥∥2

F

I Since:

(I −Π1)D(I −Π1) = −2XX>, (I −Π1)D̃(I −Π1) = −2ZZ>,

the problem becomes:
min

Z∈Rn×k
4
∥∥∥XX> − ZZ>

∥∥∥2
F

I This is a low-rank approximation problem with orthogonality implied for the
columns of Z.
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Training MDS: Distance Matrix and Double Centering

I Define the centering matrix:
H = In −ΠC(1)

I From squared distance matrix D, define the inner product matrix B:

B = −1

2
HDH
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Connection to Low-dimensional Embedding

I We compute eigen-decomposition of B:

B = VΛV>

I Low-dimensional embedding is given by:

Z = VkΛ
1/2
k

I Then, the squared distances in the new space are:

‖zi − zj‖2 = Bii + Bjj − 2Bij

which approximates the original Dij
I Thus, double centering enables recovery of dot products from pairwise distances,

which makes distance-preserving embedding possible.

Department of Statistical Data Science 28



Low-dimensional Embedding

I Perform eigen-decomposition of B:

B = VΛV>

where Λ = diag(λ1, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ 0

I Define the low-dimensional coordinates:

Z = VkΛ
1/2
k ∈ Rn×k

I The rows of Z are the coordinates in Rk that best preserve the pairwise distances.
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Objective Functions in MDS

Strain Function: (used in Classical MDS)

StrainD(z1, . . . , zn) =

√√√√‖XX> − ZZ>‖2F
‖XX>‖2F

I Measures the difference between the original inner product matrix and the
low-dimensional one.

I Optimized directly in classical MDS via eigen-decomposition.
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Stress Function (Used in Metric MDS)

Stress Function:

StressD(z1, . . . , zn) =

√√√√∑
i,j (dij − ‖zi − zj‖)2∑

i,j d2
ij

I Measures the discrepancy between original distances dij and embedded distances.
I Used in metric MDS, optimized using iterative methods (e.g., SMACOF).

I More flexible, accommodates non-Euclidean input distances.
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Mapping with Isometric Transformation

I The low-dimensional representation Z ∈ Rn×k can be written as:

Z = VkΛ
1/2
k R

where:
I Vk : eigenvectors (principal directions)
I Λk : top k eigenvalues (diagonal matrix)
I R: rotation matrix (orthogonal transformation)

I Both rotation and translation preserve Euclidean distances — this is called an
isometric transformation.
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Distance Preservation

1. Inner product matrix is invariant under rotation:

ZZ> = (VkΛ
1/2
k R)(VkΛ

1/2
k R)> = VkΛkV>

k

2. Translation of Z does not change pairwise distances:

‖zi + c − (zj + c)‖ = ‖zi − zj‖

for any constant vector c ∈ Rk .

Conclusion: The geometry of the embedded space is preserved under orthogonal and
translational transformations.
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Recovering Geographic Positions
I The coordinates from MDS can be

rotated and aligned with actual
geographic maps using Procrustes
alignment.

I This allows for an approximate
reconstruction of the cities’ locations.

I Interpretation: Axes in MDS have no
inherent meaning, but after rotation,
they can align with real-world
longitude and latitude.

I This mapping demonstrates how
structural information (distances)
alone can recover meaningful spatial
configurations.

Figure: source: Krabbe, Paul. The
measurement of health and health status:
concepts, methods and applications from a
multidisciplinary perspective. Academic Press,
2016.
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Nonmetric MDS



From Inner Product to Dissimilarity

I Classical MDS solves:
min

Z

∥∥∥XX> − ZZ>
∥∥∥2

F

I The matrix XX> contains centered inner products:

x>
i xj = ‖xi‖‖xj‖ cos θ

I These inner products encode information about dissimilarities between variables or
observations.
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Generalized MDS Problem

I Given a dissimilarity matrix [δij ] defined in a high-dimensional space,
I Find low-dimensional points z1, . . . , zn ∈ Rk such that:

‖zi − zj‖2 ≈ δij

I That is, distances in the embedded space approximate the given dissimilarities.
I This formulation applies even when no explicit coordinates xi exist, only pairwise

dissimilarities.
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Why Non-metric MDS? [Agarwal, 2007]

I Suppose we want to visualize the perceptual similarity of visual stimuli.
I Participants are asked to rate the similarity between objects on a scale from 1 to

10.
I Although these scores can be used for embedding and visualization, the internal

criteria used by participants may vary.
I For example, evaluations may depend on the order in which stimuli are presented.
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Ordinal Data and Robust Representation

I Absolute values provided by users are often unreliable.
I However, the relative orderings (ranking of distances or similarities) tend to be

more consistent.
I Question: Can we develop an MDS method that only uses the ordering of

dissimilarities rather than their absolute magnitudes?
I Answer: Yes — this leads to the formulation of Non-metric MDS.
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