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Introduction



Multidimensional Scaling (MDS)

I Goal: Find low-dimensional embedding that preserves pairwise distances
I Rougly spealing, classical MDS minimizes:∑

i<j

(
‖xi − xj‖2 − ‖yi − yj‖2

)2
I Distance-based embedding, assumes Euclidean geometry
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Limitations of MDS: Overview

I Global–local trade‑off: stress weights all pairs equally → local neighborhoods
distort

I Crowding problem: high‑dimensional volume vs. 2-dimensional area
I Optimization complexity: stress minimization is NP‑hard
I Statistical instability in the presence of noise
I Lower‑bound theory: JL lemma → unavoidable distortion when k = 2
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Global‑Stress Objective Distorts Locals

I Raw‑stress (Kruskal, 1964):

S(Y ) =
∑
i<j

(‖xi − xj‖2 − ‖yi − yj‖2)2

I All pairs equally weighted ⇒ a few large distances dominate optimisation.
I Stress <0.05 ”excellent”, >0.20 ”poor” (rule of thumb).
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Crowding Problem: Volume Argument I

I Volume of ball in Rd with radius r : Vd(r) = Cd rd .

I Space per point (volume argument):

S(d)(r) = Vd(r)
n

I Find the typical spacing sd by equating a d-ball volume to S(d)(r):

Cdsd
d =

Cd rd

n =⇒ sd(r) = rn−1/d .

Also, s2(r ′) = r ′n−1/2
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Crowding Problem: Volume Argument II

I For convenience let r = 1 denote sd(1) by sd . If we maintain the distance between
adjacent points on R2 (s2(r ′) = r ′n−1/2 = n−1/d = sd ) then

r ′ = n
d−2
2d

That is, to main the distance equally, we have to scatter n points on the circle
with V2(r ′) = C2n

d−2
d

I Consider the scaling for the unit circle then the shrink factor rendering the volumn
on 2-D to be 1 is given by 1√

C2
n− d−2

2d

Department of Statistical Data Science 8



Crowding Problem: Volume Argument III

I Before the shrinkage, s2(r ′) = sd Since s2(r ′) ∝ r ′, we know that
s2(kr ′)/s2(r ′) = k.

I Thus, the distance between adjacent points on R2 with the shrinkage factor
1√
C2

n− d−2
2d becomes

sd
1√
C2

n− d−2
2d

Moreover, most of data on the high dimensional space lie on the boundary of the
hyperspheres. Thus, A vast number of points live in the “moderate distance” shell in
high-D. In 2-D there is simply not enough area to place them without severe overlap.
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Optimisation Complexity of MDS

I Stress minimisation (a.k.a. Kamada–Kawai) shown NP‑hard for k = 2 (Favoni
Huang Lee 2021).

I Gradient descent may converge to poor local minima; guarantees only for special
graphs.
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Motivation: Using Probabilities for Similarity

I Instead of preserving pairwise distances directly, preserve pairwise similarities.
I Define similarity between xi and xj as a conditional probability: ”Given xi , how

likely is xj a neighbor?”
I High similarity ⇒ high probability pj|i

Department of Statistical Data Science 11



Low dimensional Embedding I
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Stochastic Neighbor Embedding



SNE: Basic Idea I

Stochastic Neighbor Embedding (SNE)
I Map high-dimensional points xi ∈ RD to low-dimensional yi ∈ Rd (d =2 or 3).
I Preserve local structure by matching neighbourhood probabilities.
I For any distance kernel k(x) > 0 that decreases with x (distance) and assume that

k is gaussian.
I For each point xi , define a conditional similarity:

pj|i =
exp

(
−‖xi − xj‖2/2σ2

i
)∑

k 6=i
exp

(
−‖xi − xk‖2/2σ2

i
)
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SNE: Basic Idea II

In the map space we use a fixed-scale kernel:

qj|i =
exp

(
−‖yi − yj‖2

)∑
k 6=i

exp
(
−‖yi − yk‖2

)

I Goal: make qj|i as close as possible to pj|i for every i (estimation of yis called the
low dimensional embedding).

I Cost function (sum of KL divergences):

CSNE =
∑

i
KL

(
Pi ‖Qi

)
=

∑
i

∑
j

pj|i log
pj|i
qj|i

.
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SNE: Stochastic Neighbor Embedding
I Goal: Embed high-dimensional data into a low-dimensional space while preserving

local structure.
I Conditional probability for similarity in high dimensions:

pj|i =
exp

(
−‖xi − xj‖2/2σ2

i
)∑

k 6=i exp
(
−‖xi − xk‖2/2σ2

i
)

I In low-dimensional space:

qj|i =
exp

(
−‖yi − yj‖2

)∑
k 6=i exp (−‖yi − yk‖2)

I Cost function: Kullback-Leibler divergence

C =
∑

i
KL(Pi‖Qi) =

∑
i

∑
j

pj|i log
pj|i
qj|i
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Limitations of SNE

I Asymmetry: pj|i 6= pi|j
I Crowding problem: Hard to preserve all pairwise distances in low-dimensional

space
I Optimization challenges: Multiple local minima
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Recall: the Crowding Problem

I When mapping RD (D�d) to R2, moderately distant neighbours of a point
cannot all fit at proper relative distances.

I They are pushed to the same narrow annulus, making clusters overlap or distort
into “rings”.

I Visual artefacts: blurred cluster borders, false neighbours.
I Moreover, most of data on the high dimensional space lie on the boundary of the

hyperspheres. Thus, A vast number of points live in the “moderate distance” shell
in high-D.
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Crowding Problem in Probabilistic View

I High-dim similarities use a Gaussian kernel pij ∝ exp(−d2
ij/2σ

2).

I Mid-range distances ⇒ pij ≈ 0 but there are many such pairs.
I If the map also uses a Gaussian, qij for those pairs ≈ 0 too ⇒ KL divergence

forces them closer, intensifying crowding.
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t-SNE



How t-SNE Resolves Crowding

Student-t kernel

qij ∝ (1 + d2
ij )

−1

Heavy tail ∼ d−2 keeps moderate
neighbours at non-zero probability.

Early exaggeration

pij ← αpij , α ≈ 12

Separates clusters early, then relaxes for
fine-scale structure.

Perplexity tuning provides an additional trade-off handle.
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t-SNE

xi ∈ Rp for i = 1, · · · , n: (high dimensional) data points. Define a relative closeness of
xj from xi by

pi|j =
exp(−‖xi − xj‖2/σ2

i )∑
k exp(−‖xi − xk‖2/σ2

i )
.

For symmetry let
pij =

pi|j + pj|i
2

,

the relative closeness between xi and xj .
Roughly, if ‖xi − xj‖/‖xi − xk‖ ' 1/C then pi|j/pi|k ' exp(C).
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t-SNE

yi ∈ Rq for i = 1, · · · , n: (low dimensional) embedded data points. Define a relative
closeness of yj from yi by

qi|j =
(1 + ‖yi − yj‖2)−1∑
k(1 + ‖yi − yk‖2)−1

.

Roughly, if ‖yi − yj‖/‖yi − yk‖ ' 1/C then qi|j/qi|k ' C .
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t-SNE

Objective (loss) – symmetrised KL divergence

L =
∑
i 6=j

pij log
pij
qij

.
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Gradient w.r.t. a Map Point

Because only qij depends on y,

∂L
∂yi

= 4
∑

j
(pij − qij)

(yi − yj)

1 + ‖yi − yj‖2
.

I Attractive term when pij > qij (pulls neighbours closer).
I Repulsive term when pij < qij (pushes points apart).
I Heavy-tailed denominator mitigates the crowding problem.
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Convergence Diagnostics

I Monitor L – should plateau smoothly after exaggeration ends.
I Watch the KL gap

∑
i 6=j |pij − qij | for stagnation.

I Inspect embeddings every 100–200 iter.: unresolved crowding ⇒ raise perplexity
or run longer.
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Visualization

Figure: Left: SNE, Right: t-SNE
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Conclusion



Key Takeaways

I MDS preserves global pairwise distances but suffers from crowding, uniform stress
weighting, and NP-hard optimisation.

I SNE shifts the focus to local similarities, yet its asymmetric Gaussian kernel still
crowds mid-range neighbours.

I t-SNE resolves crowding via a heavy-tailed Student-t kernel, early exaggeration,
and perplexity-controlled neighbourhoods.

I Gradient can be written in closed form, enabling efficient momentum GD;

convergence diagnosed by KL loss plateau.
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