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Introduction



Multidimensional Scaling (MDS)

» Goal: Find low-dimensional embedding that preserves pairwise distances

» Rougly spealing, classical MDS minimizes:

S (Uxi =12 = Iy — yl1?)°

i<j

» Distance-based embedding, assumes Euclidean geometry
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Limitations of MDS: Overview

» Global-local trade-off: stress weights all pairs equally — local neighborhoods
distort

» Crowding problem: high-dimensional volume vs. 2-dimensional area
> Optimization complexity: stress minimization is NP-hard

P Statistical instability in the presence of noise

» Lower-bound theory: JL lemma — unavoidable distortion when k = 2
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Global-Stress Objective Distorts Locals

» Raw-stress (Kruskal, 1964):

S(Y) = (Ix =%l = lyi = yilI*)?

i<j
> All pairs equally weighted = a few large distances dominate optimisation.
» Stress <0.05 "excellent”, >0.20 "poor” (rule of thumb).
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Crowding Problem: Volume Argument |

» Volume of ball in RY with radius r: Vy(r) = Cyre.

» Space per point (volume argument):

» Find the typical spacing sy by equating a d-ball volume to S(d)(r):

Cyr®

Cysd = — sq(r) = m~ 19,

Also, sy(r') = r'n=1/?
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Crowding Problem: Volume Argument Il

» For convenience let r = 1 denote s4(1) by sy. If we maintain the distance between
adjacent points on R? (sy(r') = r'n=Y/2 = n=1/9 = 5;) then

That is, to main the distance equally, we have to scatter n points on the circle
d—2

with Vo(r') = Gon4

» Consider the scaling for the unit circle then the shrink factor rendering the volumn
d—2

on 2-D to be 1 is given by \/%n 2d
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Crowding Problem: Volume Argument Il

» Before the shrinkage, sy(r') = sy Since sy(r') o< r/, we know that
so(kr')/sa(r') = k.
» Thus, the distance between adjacent points on R? with the shrinkage factor

1 —d=2
——n~ 2d becomes
v Ca

Moreover, most of data on the high dimensional space lie on the boundary of the
hyperspheres. Thus, A vast number of points live in the “moderate distance” shell in
high-D. In 2-D there is simply not enough area to place them without severe overlap.
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Optimisation Complexity of MDS

» Stress minimisation (a.k.a. Kamada—Kawai) shown NP-hard for k = 2 (Favoni
Huang Lee 2021).

» Gradient descent may converge to poor local minima; guarantees only for special
graphs.
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Motivation: Using Probabilities for Similarity

» Instead of preserving pairwise distances directly, preserve pairwise similarities.

» Define similarity between x; and x; as a conditional probability: "Given x;, how
likely is x; a neighbor?”
» High similarity = high probability p;;
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Low dimensional Embedding |
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Stochastic Neighbor Embedding



SNE: Basic Idea |

Stochastic Neighbor Embedding (SNE)
» Map high-dimensional points x; € RP to low-dimensional Vi € RY (d=2 or 3).
P Preserve local structure by matching neighbourhood probabilities.

» For any distance kernel k(x) > 0 that decreases with x (distance) and assume that
k is gaussian.

» For each point x;, define a conditional similarity:

exp (—||x; — xjl|*/207)

> exp(—lxi — xl|*/207)

ki

Pjli =
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SNE: Basic Idea Il

In the map space we use a fixed-scale kernel:

exp(—|ly; — yil*)

.
TS expl(—llys - i)

Kk£i

> Goal: make g;|; as close as possible to p;; for every i (estimation of y;s called the
low dimensional embedding).

» Cost function (sum of KL divergences):

CSNE = ZKL(P,‘ H Q,) = Z ij“ log pj|i
i i

qj|i‘
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SNE: Stochastic Neighbor Embedding

» Goal: Embed high-dimensional data into a low-dimensional space while preserving
local structure.

» Conditional probability for similarity in high dimensions:
exp (=[x — x/1/207)
Zk;éi exp (—”Xi - Xk||2/2‘7i2)

Pjli =

» In low-dimensional space:

exp (—llyi — yll*)
Zk;éieXp(_”yi = ykll?)

qjli =

» Cost function: Kullback-Leibler divergence

C=Y KLPQ) =3 pyjilog 2
i i i

qj|i
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Limitations of SNE

> Asymmetry: pjj; # pj|

» Crowding problem: Hard to preserve all pairwise distances in low-dimensional
space

» Optimization challenges: Multiple local minima
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Recall: the Crowding Problem

» When mapping RP (D> d) to R?, moderately distant neighbours of a point
cannot all fit at proper relative distances.

» They are pushed to the same narrow annulus, making clusters overlap or distort
into “rings”.

» Visual artefacts: blurred cluster borders, false neighbours.

» Moreover, most of data on the high dimensional space lie on the boundary of the

hyperspheres. Thus, A vast number of points live in the “moderate distance” shell
in high-D.
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Crowding Problem in Probabilistic View

» High-dim similarities use a Gaussian kernel pj; o exp(—dg/2a2).
» Mid-range distances = p;; = 0 but there are many such pairs.

» |If the map also uses a Gaussian, gj; for those pairs ~ 0 too = KL divergence
forces them closer, intensifying crowding.
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t-SNE



How t-SNE Resolves Crowding

Student-t kernel Early exaggeration

qij (1+d,-3)_1 pij < apij, o~ 12
Heavy tail ~ d~2 keeps moderate Separates clusters early, then relaxes for
neighbours at non-zero probability. fine-scale structure.

Perplexity tuning provides an additional trade-off handle.
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t-SNE

x; € RP for i = 1,--- , n: (high dimensional) data points. Define a relative closeness of
x;j from x; by
g = Pl =51/eD)
>k exp(—|lx — xc[l?/o7)

For symmetry let
Pt P
ij = 9 ’
the relative closeness between x; and Xx;.
Roughly, if [[x; — x| /[[xi — xk|| == 1/C then p;j;/pjjx =~ exp(C).
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t-SNE

yi € R9 for i = 1,---,n: (low dimensional) embedded data points. Define a relative
closeness of y; from y; by

S (R 17
b A+ i — w1

Roughly, if [ly; — y;|l/Ilyi — ykll = 1/C then g;;/qijx ~ C.
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t-SNE

Objective (loss) — symmetrised KL divergence

pii
L= Z pjj log q—”
i#j ’
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Gradient w.r.t. a Map Point

Because only g;; depends on y,

()'l YJ)
—4
ay, Z”” Oy ——

» Attractive term when pj; > gj; (pulls neighbours closer).
» Repulsive term when p;; < g;; (pushes points apart).

P> Heavy-tailed denominator mitigates the crowding problem.
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Convergence Diagnostics

» Monitor £ — should plateau smoothly after exaggeration ends.

> Watch the KL gap Z,.# |pij — qjj| for stagnation.
» Inspect embeddings every 100-200 iter.: unresolved crowding = raise perplexity
or run longer.
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Visualization

SNE (Gaussian kernel)

t-SNE (Student-t kernel)
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Figure: Left: SNE, Right:
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Conclusion



Key Takeaways

» MDS preserves global pairwise distances but suffers from crowding, uniform stress
weighting, and NP-hard optimisation.

» SNE shifts the focus to local similarities, yet its asymmetric Gaussian kernel still
crowds mid-range neighbours.

» t-SNE resolves crowding via a heavy-tailed Student-t kernel, early exaggeration,
and perplexity-controlled neighbourhoods.

» Gradient can be written in closed form, enabling efficient momentum GD;
convergence diagnosed by KL loss plateau.
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